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Abstract: The Wiener polarity index of a graph G, is the number of unordered pairs of vertices that are at distance 3 in G.
This index can reflect the specific distance relation between vertices in the graph, and provides a new way for the study of graph
structure. In this paper, the graph entropy based on Wiener polarity index defined. Based on the above definition of graph entropy,
it compares the graph entropy of path and balanced double star graphs based on Wiener polarity index. The expressions of graph
entropy based on Wiener polarity index for trees with diameter d ≥ 3 are studied under four graph operations: tensor product,
strong product, Cartesian product and composite graph.
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1. Introduction
The concept of graph entropy was introduced by Shannon

in 1948 [1]. With the research on graph entropy conducted
by Dehmer, Mowshowitz, and others [2, 3], it has gradually
evolved into an independent research field. Graph distance
entropy is a significant research direction at the intersection of
graph theory and information theory. In graph theory, distance
entropy is used to quantify the uncertainty or complexity
of the distance distribution between vertices or vertex pairs,
studying the structural characteristics of graphs by calculating
the entropy value based on the probability distribution of
distances within the graph. Cao et al. [4] were the first to
propose graph entropy based on vertex degree powers and
investigated the bounds of graph entropy for various graph
classes (such as tree graphs, unicyclic graphs, bicyclic graphs,
etc.), as well as the corresponding extremal graphs. Lu et
al. [5] obtained new bounds for graph entropy using Jensen’s
inequality and the minimum-maximum degree. Chen et al.
[6] defined distance entropy based on the number of vertices
with a distance of k from a given vertex and studied the
extremal graphs for the entropy of trees. Dehmer et al. [7]
provided an upper bound for distance entropy. Dong et al.
[8] defined the Wiener entropy of graphs and obtained related

results. With in-depth research on graph entropy, its concept
has also been extended to hypergraphs [9, 10]. Other graph
invariants, namely the number of vertices, degree sequence and
distance, are also used in the graph entropy measure, and the
research results can be referred to [11-15]. Graph arithmetic is
widely used not only in computer science, but also in many
topological index literature (such as Wiener index, Wiener
polarity index, Zagreb index, Randić index, etc.).

Currently, there are relatively few research results related to
graph distance entropy. This paper primarily focuses on the
calculation of graph distance entropy. Specifically, this paper
investigates graph entropy based on the Wiener polarity index.
Through calculations, it obtains the graph entropy based on the
Wiener polarity index for path graphs and balanced double-star
graphs, as well as the expressions for graph entropy based on
the Wiener polarity index for trees with a diameter of ≥ 3
under four graph operations: tensor product, strong product,
Cartesian product, and composite graphs.

2. Preliminary Knowledge

Let G = (V,E) is a simple connected graph with a set
of vertices v ∈ V (G) and a set of edges e ∈ E(G). All
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vertices adjacent to vertex u are called neighbors of u. The
neighborhood of u is the set of the neighbors of u. The number
of edges adjacent to vertex u is the degree of u, denoted by
d(u). Vertices of degrees 0 and 1 are said to be isolated
and pendent vertices, respectively. The distance between two
vertices u and v, denoted by d(u, v), is the length of the
shortest path from u to v. The diameter diam(G) of G is the
maximum eccentricity among all vertices of G. The radius
rad(G) is the minimum eccentricity among all vertices of G.
For a vertex v ∈ V , the j− sphere of v is the set of vertices at
distance j to v denoted by Sj(v,G). For vertices u ∈ V (G),
the degree in which the vertex u is in G is represented by
dG(u), record briefly as d(u). For two simple graphs G and
graphs H , Their tensor product, strong product, Cartesian
product and composite graph are respectively expressed as G�
H , G⊗H , G×H , G[H]. The Zagreb index [6] is defined as
M1(G) =

∑
v∈V (G) dG(v)2 =

∑
uv∈E(G) (dG(u) + dG(v)),

M2(G) =
∑

uv∈E(G) dG(u)dG(v), where M1(G) and M2(G)
are the first and second Zagreb indices, respectively. All the
logarithmic functions in this paper have base 2 as their based.

Definition 2.1. [2] Let G = (V,E) be the simple connected
graph with n vertices. Define the probability function of the
vertex vi ∈ V (G) as p(vi) = f(vi)∑n

j=1 f(vj)
. Then

If (G) = −
n∑

i=1

p(vi) log p(vi)

= −
n∑

i=1

f(vi)∑n
j=1 f(vj)

log
f(vi)∑n
j=1 f(vj)

. (1)

As distance is an important graph invariant, a new distance-
based graph entropy is defined below.

Definition 2.2. [6] Let G = (V,E) be the simple connected
graph with n vertices. For vertex vi ∈ V , nk(vi) represents
the number of vertices vi with a distance of k between the
vertex and all other vertices. Then the general form of distance
entropy is

Ik(G) = −
n∑

i=1

nk(vi)∑n
j=1 nk(vi)

log
nk(vi)∑n
j=1 nk(vi)

= log[

n∑
i=1

nk(vi)]−
∑n

i=1 nk(vi) log nk(vi)∑n
j=1 nk(vi)

, (2)

where nk(vi) = |Sk(vi, G)| = |u : d(u, vi) = k, u ∈ V (G)|,
k is an integer and 1 ≤ k ≤ D(G).

The graph entropy based on the Wiener polarity index can
be obtained.

Definition 2.3. [8] Let G = (V,E) be the simple connected
graph with n vertices. For vertex vi ∈ V , nk(vi) represents the
number of vertices vi with a distance of k between the vertex
and all other vertices, the graph entropy based on the Wiener
polarity index is

I3(G) = log[2W3(G)]

− 1

2W3(G)
·

n∑
i=1

n3(vi) log n3(vi), (3)

where n3(vi) = |Sk(vi, G)| = |u : d(u, vi) = 3, u ∈ V (G)|,∑n
i=1 n3(vi) = 2W3(G).
Definition 2.4. [6] Let T = (V,E) be a tree with n vertices.

Since W3(T ) =
∑

uv∈E(T )(d(u)− 1)(d(v)− 1), then

I3(T ) = log(2
∑

uv∈E(T )

(d(u)− 1)(d(v)− 1))

−
∑n

i=1 n3(vi) log n3(vi)

2
∑

uv∈E(T )(d(u)− 1)(d(v)− 1)
. (4)

If T ∼= Sn, then I3(Sn) = −∞;
If T ∼= Pn, then I3(Pn) = log(n− 3) + 3

n−3 , n ≥ 7.
Let Sbn2 c,d

n
2 e be the balanced double star graph with

n vertices. It can be obtained by simple calculation
I3(Sbn2 c,d

n
2 e) = log(2

√
n1n2), where n1 and n2 be the

pendent vertices on the left and right sides of the balanced
double star graph Sbn2 c,d

n
2 e, and n1 + n2 + 2 = n.

Theorem 2.1. Let Pn ,Sbn2 c,dn2 e be the path graph and the
balanced double star graph with n vertices, respectively. Then

I3(Pn) > I3(Sbn2 c,d
n
2 e).

Proof.

I3(Pn)− I3(Sbn2 c,d
n
2 e)

= log(n− 3) +
3

n− 3
− log(2

√
n1n2)

= log(
n1 + n2 − 1

2
√
n1n2

) +
3

n1 + n2 − 1
> 0,

then I3(Pn) > I3(Sbn2 c,d
n
2 e).

Lemma 2.1. [6] Let T1 and T2 be the trees with the
number of vertices m and n and the number of edges p
and q, respectively. The graph obtained after tensor product
operation is T1⊗T2, where |V (T1⊗T2)| = |V (T1)||V (T2)| =
mn, E(T1 ⊗ T2) = 2|E(T1)||E(T2)| = 2pq, then for
T1 ⊗ T2, the degree of the vertex (ui, vj) is expressed as
dT1⊗T2

((ui, vj)) = dT1
(ui)dT2

(vj).
Lemma 2.2. [6] Let T1 and T2 be the trees with the

number of vertices m and n and the number of edges p
and q, respectively. The graph obtained after strong product
operation is T1�T2, where |V (T1�T2)| = |V (T1)||V (T2)| =
mn, E(T1 � T2) = |V (T1)||E(T2)| + |E(T1)||V (T2)| +
2|E(T1)||E(T2)| = mq + np + 2pq, then for T1 � T2, the
degree of the vertex (ui, vj) is expressed as dT1�T2

((ui, vj)) =
dT1(ui) + dT2(vj) + dT1(ui)dT2(vj).

Lemma 2.3. [6] Let T1 and T2 be the trees with the
number of vertices m and n and the number of edges p and
q, respectively. The graph obtained after Cartesian product
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operation is T1×T2,, where |V (T1×T2)| = |V (T1)||V (T2)| =
mn, E(T1 × T2) = |E(T1)||E(T2)| + |E(T1)||V (T2)| =
pq + pn, then for T1 × T2, the degree of the vertex (ui, vj)
is expressed as dT1×T2((ui, vj)) = dT1(ui) + dT2(vj).

Lemma 2.4. [6] Let T1 and T2 be the trees with the
number of vertices m and n and the number of edges p
and q, respectively. The graph obtained after tensor product
operation is T1[T2], where |V (T1[T2])| = |V (T1)||V (T2)| =
mn, E(T1[T2]) = |E(T1)||E(T2)| + |E(T1)||V (T2)|2 =
pq + pn2, then for T1[T2], the degree of the vertex (ui, vj)
is expressed as dT1[T2]((ui, vj)) = ndT1

(ui) + dT2
(vj).

3. Main Results

In this section, T1 and T2 are trees with diameter d ≥ 3
respectively. The graph entropy based on distance equal to
3 under four graph operations is obtained mainly through
calculation.

Theorem 3.1. [6] Let T1 and T2 be the trees with the
number of vertices m and n and the number of edges p
and q, respectively. The graph obtained after tensor product
operation is T1 ⊗ T2. Then

I3(T1 ⊗ T2) = log(4M2(T1)M2(T2)− 32pq + 4mn)− 1

4M2(T1)M2(T2)− 32pq + 4mn

·
m∑

w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw)dT2(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw)dT2(vr)− 1),

where N2
T1

(uw) = {ui ∈ V (T1)|d(ui, uw) = 2}, N2
T2

(vr) = {vj ∈ V (T2)|d(vj , vr) = 2},
M2(T1) =

∑
uv∈E(T1)

dT1
(u)dT1

(v), M2(T2) =
∑

uv∈E(T2)
dT2

(u)dT2
(v).

Proof.
By Lemma 2.1, we have

W3(T1 ⊗ T2) =
∑

(ui,vj)(uk,vr)∈E(T1⊗T2)

(dT1⊗T2
(ui, vj)− 1)(dT1⊗T2

(uk, vr)− 1)

= 2
∑

uiuk∈E(T1)

∑
vjvr∈E(T2)

(dT1
(ui)dT2

(vj)− 1)(dT1
(uk)dT2

(vr)− 1) = 2M2(T1)M2(T2)− 16pq + 2mn.

Since
∑n

i=1 n3(vi) log n3(vi) =
∑n

j=1(
∑

N2
T (wj)

(dT (wj)− 1)) log(
∑

N2
T (wj)

(dT (wj)− 1)),
where N2

T (wj) = {u ∈ V (T )|d(u,wj) = 2}. Then

m∑
w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

dT1
(uw)dT2

(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1
(uw)dT2

(vr)− 1).

By calculation

I3(T1 ⊗ T2) = log(4M2(T1)M2(T2)− 32pq + 4mn)− 1

4M2(T1)M2(T2)− 32pq + 4mn

·
m∑

w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw)dT2(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw)dT2(vr)− 1).

Corollary 3.1. Let Pn1 and Pn2 are connected paths with diameter d ≥ 3 respectively. Pn1 and Pn2 after the tensor product
operation to produce the Pn1

⊗ Pn2
. Then

I3(Pn1
⊗ Pn2

) = log(4(249n1n2 − 216n1 − 216n2 + 188)− 10 + 5 log 5 + 3(n1 + n2 − 16) log(n1 + n2 − 16)

4(249n1n2 − 216n1 − 216n2 + 188)
.

Proof.
By Theorem 3.1, we have

W3(Pn1
⊗ Pn2

) = 4(249n1n2 − 216n1 − 216n2 + 188,
n∑

i=1

n3(vi) log n3(vi) = 10 + 5 log 5 + 3(n1 + n2 − 16) log(n1 + n2 − 16).
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Theorem 3.2. [6] Let T1 and T2 be the trees with the number of vertices m and n and the number of edges p and q, respectively.
The graph obtained after strong product operation is T1 � T2. Then

I3(T1 � T2) = log(M)− 1

M
·

m∑
w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

(dT1(uw) + dT2(vr) + dT1(uw)dT2(vr)− 1)

· log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1
(uw) + dT2

(vr) + dT1
(uw)dT2

(vr))),

where N2
T1

(uw) = {ui ∈ V (T1)|d(ui, uw) = 2}, N2
T2

(vr) = {vj ∈ V (T2)|d(vj , vr) = 2},
M2(T1) =

∑
uv∈E(T1)

dT1
(u)dT1

(v),M2(T2) =
∑

uv∈E(T2)
dT2

(u)dT2
(v), M1(T1) =

∑
v∈V (T1)

dT1
(v)2,

M1(T2) =
∑

v∈V (T2)
dT2(v)2, M = 2W3(T1 � T2) = 4M2(T1)M2(T2) + 20qM2(T1) + 20pM2(T2)− 28pq.

Proof.
By Lemma 2.2, we have

W3(T1 � T2) =
∑

(ui,vj)(uk,vr)∈E(T1�T2)

(dT1�T2
(ui, vj)− 1)(dT1�T2

(uk, vr)− 1)

= 2
∑

uiuk∈E(T1)

∑
vjvr∈E(T2)

(dT1
(ui)dT2

(vj) + dT1
(ui) + dT2

(vj)− 1)

· (dT1
(uk)dT2

(vr) + dT1
(uk) + dT2

(vr)− 1)

= 2M2(T1)M2(T2) + 10qM2(T1) + 10pM2(T2)− 14pq.

Since
∑n

i=1 n3(vi) log n3(vi) =
∑n

j=1(
∑

N2
T (wj)

(dT (wj)− 1)) log(
∑

N2
T (wj)

(dT (wj)− 1)),
where N2

T (wj) = {u ∈ V (T )|d(u,wj) = 2}. Then

m∑
w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

dT1
(uw)dT2

(vr) + dT1
(uw) + dT2

(vr)− 1)

· log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw)dT2(vr) + dT1(uw) + dT2(vr)− 1).

By calculation

I3(T1 � T2) = log(M)− 1

M
·

m∑
w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

(dT1(uw) + dT2(vr) + dT1(uw)dT2(vr)− 1)

· log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1
(uw) + dT2

(vr) + dT1
(uw)dT2

(vr)− 1).

Let X = 4(409n1n2 − 295n1 − 295n2 + 203), Y = [n1n2(1 + n1)(1 + n2)(158 + 108 log 3 + 5 log 5 + 2(n1 + n2 − 14))],
the following corollary is obtained

Corollary 3.2. Let Pn1 and Pn2 are connected paths with diameter d ≥ 3 respectively. Pn1 and Pn2 after the strong product
operation to produce the Pn1

� Pn2
. Then

I3(Pn1
� Pn2

) = logX − Y

X
.

Proof.
By Theorem 3.2, we have

W3(Pn1
� Pn2

) = 4(409n1n2 − 295n1 − 295n2 + 203),
n∑

i=1

n3(vi) log n3(vi) = [n1n2(1 + n1)(1 + n2)(158 + 108 log 3 + 5 log 5 + 2(n1 + n2 − 14))].
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Theorem 3.3. [6] Let T1 and T2 be the trees with the number of vertices m and n and the number of edges p and q, respectively.
The graph obtained after Cartesian product operation is T1 × T2. Then

I3(T1 × T2) = log(2qM2(T1) + 2pM2(T2) + 2pq)− 1

2qM2(T1) + 2pM2(T2) + 2pq

·
m∑

w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw) + dT2(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw) + dT2(vr)− 1),

where N2
T1

(uw) = {ui ∈ V (T1)|d(ui, uw) = 2}, N2
T2

(vr) = {vj ∈ V (T2)|d(vj , vr) = 2},
M2(T1) =

∑
uv∈E(T1)

dT1
(u)dT1

(v),M2(T2) =
∑

uv∈E(T2)
dT2

(u)dT2
(v).

Proof.
By Lemma 2.3, we have

W3(T1 × T2) =
∑

(ui,vj)(uk,vr)∈E(T1×T2)

(dT1×T2
(ui, vj)− 1)(dT1×T2

(uk, vr)− 1)

=
∑

uiuk∈E(T1)

∑
vjvr∈E(T2)

(dT1(ui) + dT2(vj)− 1)(dT1(uk) + dT2(vr)− 1)

= qM2(T1) + pM2(T2) + pq.

Since
∑n

i=1 n3(vi) log n3(vi) =
∑n

j=1(
∑

N2
T (wj)

(dT (wj)− 1)) log(
∑

N2
T (wj)

(dT (wj)− 1)),
where N2

T (wj) = {u ∈ V (T )|d(u,wj) = 2}.
Then

∑mn
h=1(

∑
N2

T1
(uw),N2

T2
(vr)

dT1
(uw) + dT2

(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)
dT1

(uw) + dT2
(vr)− 1).

By calculation

I3(T1 × T2) = log(2qM2(T1) + 2pM2(T2) + 2pq)− 1

2qM2(T1) + 2pM2(T2) + 2pq

·
m∑

w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw) + dT2(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

dT1(uw) + dT2(vr)− 1).

Corollary 3.3. Let Pn1 and Pn2 are connected paths with diameter d ≥ 3 respectively. Pn1 and Pn2 after the Cartesian product
operation to produce the Pn1 × Pn2 . Then

I3(Pn1
× Pn2

) = log(7n1n2 − 16)− 16 + 6(n1n2 − 4) log 3

7n1n2 − 16
.

Proof.
By Theorem 3.3, we have

W3(Pn1
× Pn2

) = 7n1n2 − 16,
n∑

i=1

n3(vi) log n3(vi) = 16 + 6(n1n2 − 4) log 3.

Theorem 3.4. [6] Let T1 and T2 be the trees with the number of vertices m and n and the number of edges p and q, respectively.
The graph obtained after composite graph operation is T1[T2]. Then

I3(T1[T2]) = log(2n2qM2(T1) + 2pM2(T2) + 10npq − 6pq)− 1

2n2qM2(T1) + 2pM2(T2) + 10npq − 6pq

·
m∑

w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

ndT1
(uw) + dT2

(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

ndT1
(uw) + dT2

(vr)− 1),

where N2
T1

(uw) = {ui ∈ V (T1)|d(ui, uw) = 2}, N2
T2

(vr) = {vj ∈ V (T2)|d(vj , vr) = 2},
M2(T1) =

∑
uv∈E(T1)

dT1
(u)dT1

(v),M2(T2) =
∑

uv∈E(T2)
dT2

(u)dT2
(v).

Proof.
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By Lemma 2.4, we have

W3(T1[T2]) =
∑

(ui,vj)(uk,vr)∈E(T1[T2])

(dT1[T2](ui, vj)− 1)(dT1[T2](uk, vr)− 1)

=
∑

uiuk∈E(T1)

∑
vjvr∈E(T2)

(ndT1(ui) + dT2(vj)− 1)(ndT1(uk) + dT2(vr)− 1)

= n2qM2(T1) + pM2(T2) + 5npq − 3pq.

Since
∑n

i=1 n3(vi) log n3(vi) =
∑n

j=1(
∑

N2
T (wj)

(dT (wj)− 1)) log(
∑

N2
T (wj)

(dT (wj)− 1)),
where N2

T (wj) = {u ∈ V (T )|d(u,wj) = 2}. Then

m∑
w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

ndT1(uw) + dT2(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

ndT1(uw) + dT2(vr)− 1).

By calculation

I3(T1[T2]) = log(2n2qM2(T1) + 2pM2(T2) + 10npq − 6pq)− 1

2n2qM2(T1) + 2pM2(T2) + 10npq − 6pq

·
m∑

w=1

n∑
r=1

(
∑

N2
T1

(uw),N2
T2

(vr)

ndT1
(uw) + dT2

(vr)− 1) log(
∑

N2
T1

(uw),N2
T2

(vr)

ndT1(uw) + dT2(vr)− 1).

Corollary 3.4. Let Pn1 and Pn2 are connected paths with diameter d ≥ 3 respectively. Pn1 and Pn2 after the composite graph
operation to produce the Pn1 [Pn2 ]. Then

I3(Pn1 [Pn2 ]) = log[(n1 − 1)(n2 − 1)(4n2
2 + 5n2 + 1)]− 1

(n1 − 1)(n2 − 1)(4n2
2 + 5n2 + 1)

.[12(2n2 + 1) log(2n2 + 1) + 4(3n2 − 2) log(3n2 − 2)+

(n1 + n2 − 16)(4n2 − 3) log(4n2 − 3)].

Proof.
By Theorem 3.4, we have

Wp(Pn1
[Pn2

]) = (n1 − 1)(n2 − 1)(4n2
2 + 5n2 + 1),

n∑
i=1

n3(vi) log n3(vi) = 12(2n2 + 1) log(2n2 + 1) + 4(3n2 − 2) log(3n2 − 2) + (n1 + n2 − 16)(4n2 − 3) log(4n2 − 3).

Figure 1. The illustration of the graph P? under four types of graph operations.

4. Conclusion

Currently, the research findings on the distance entropy
of graphs are relatively scant, particularly in the realms
of computational methods and practical applications, where

a multitude of unresolved questions persist. This paper
primarily focuses on computing graph entropy based on the
Wiener polarity index within the context of graph operations.
Future research avenues could involve a deeper exploration
of the distance entropy across a broader spectrum of graph
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classes and their associated computational challenges, an
investigation into the influence of various graph operations
on distance entropy, an analysis of the patterns exhibited by
entropy changes during graph operations, and the provision of
theoretical underpinnings for graph structural optimization and
algorithm design.
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