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Abstract 

Brain signals extracted through brain-computer interface systems (BCI2000- http://www.bci2000.org) allow researchers and 

computer scientists to cooperate with techniques, mathematical models and statistical inferences that allow the interpretation of 

a variety of signals provided by people with conditions that significantly affect the ability to move or perform motor activities 

due to limitations in muscles, bones or nervous system. For this study, we propose a preliminary test with the root mean square 

(rms) fluctuation function, with EEG data, whose task was the response given to real/imaginary motor stimulus. To validate the 

model and all the steps up to the configuration of the rms function, we chose the information contained in the EEG of subject 

S003, available in the public database https://physionet.org/content/eegmmidb/1.0.0/. Considering the distribution of electrodes 

in the brain (lobes: frontal, parietal, temporal and occipital) and given the data availability conditions (10 - 10 system, EDF 

format and 160 samples per second), we analyzed 12 of the 64 channels and four stimuli, namely: opening and closing the left 

or right fist, imagining opening and closing the left or right fist, opening and closing both fists or both feet and imagining 

opening and closing both fists or both feet. We evaluated their fluctuations individually and the amplitudes of channels 32 and 

37 in relation to the others (11, 22, 24, 43, 44, 49, 54, 61, 63 and 64). We observed quantitative similarities when the brain 

performs the same real/imaginary motor task and that the time of the amplitude changes with the increase of the scale n (time 

scales). In all experiments (S003_R3, S003_R4, S003_R5, S003_R6), channel 32 x 24, for n > 20 (15 seconds) was smaller 

than the others, showing that channel 32 (left hemisphere) has the largest fluctuation. From data processing (.EDF) to 

visualization of FDFA/∆log curves, we conclude that it is possible to replicate the study for more channels, as well as to 

investigate other types of activities in the human brain adapted to potential variations (DDP) generated by neurons via signals 

extracted from the EEG device. 
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1. Introduction 

The electroencephalogram (EEG) is a non-invasive, safe and 

widely used tool for assessing brain electrical activity. It is per-

formed using electrodes placed on the scalp that capture and 

record brain electrical impulses [1]. These impulses are respon-

sible for the activities performed by the human body, transmitted 

as brain commands through cells called neurons [1, 2]. 

In terms of the importance of brain electrical activity, pre-

liminary tests with mathematical/statistical models are used 

to understand and evaluate EEG signals given their im-

portance in the medical field. The tracing and behavior gen-

erated from the EEG is interpreted in research as being an 

important step that evaluates the spontaneous potential dif-

ference (electrical activity) of the brain and uses it to identify 

a variety of neurological conditions [1-3]. Most models take 

into account the frequency domain (Hz), for example the 

Fourier transform or time series, for example the Detrended 

fluctuation analysis (DFA) method [10-12]. 

The benefits of using EEG are associated with the diagnosis 

of seizure disorders, such as epilepsy, sleep monitoring, en-

cephalopathic evaluation, psychiatric disorders, assessment of 

loss of consciousness, monitoring of anesthetic depth, re-

sponse to real and imaginary motor stimuli, among others 

[4-9]. In terms of real and imaginary motor stimuli, we are 

referring to the ability of EEG to capture brain responses such 

as merely opening and closing the hands or moving the feet 

[10]. The reasons for understanding a simple motor response 

lead many researchers to develop brain-computer interface 

(BCI) systems that provide communication and control capa-

bilities for people with severe motor diseases. In summary, 

progress is the realization of practical applications, treatment 

methods, development of processing algorithms, output forms 

and operational protocols. 

As an analysis tool and given its ease in modeling time se-

ries, especially the context and importance of EEG reading, 

we propose in this sample test to evaluate the performance of 

the Detrended fluctuation analysis (DFA) method and the 

rms fluctuation function (∆log) in a database available at 

physionet.org [13, 14]. 

In this sense, this test seeks to design all the steps of the 

recent rms fluctuation function (∆log) [10], with the purpose 

of configuring the method and testing it in the future on new 

bases. All the steps and understanding of this test in this 

article are organized as follows: a Materials and Methods 

section, with basic information and description of the DFA 

models and the rms fluctuation function and a Results and 

Discussion section, finally the Conclusion. 

2. Materials and Methods 

2.1. Database 

All series analyzed in this test were taken from the database 

available at https://physionet.org/pn4/eegmmidb/. A subject 

(S003) was randomly selected from this database, we included 

the experiments: S003_R3, S003_R4, S003_R5 and S003_R6, 

in a group of three experiments per subject, these representing 

the first of the three. The experimental protocol is described in 

detail in subsection 2.2 (Experimental protocol). The data 

available by the database are in EDF (European Data Format) 

containing 64 channels, each with a sampling rate of 0.00625 

seconds, and a reference channel. For this test with the rms 

fluctuation function, we chose channels 11, 22, 24, 32, 37, 43, 

44, 49, 54, 61, 63 and 64. 32 and 37 were the channels chosen 

among the others because they presented the largest fluctua-

tions in relation to the others. A detailed visualization of the 

position of the channels distributed in the brain can be seen at 

https://physionet.org/content/eegmmidb/1.0.0/64_channel_sha

rbrough.png. 

2.2. Experimental Protocol 

Below is a detailed description of the stimulus given to the 

subject who performed the real/imaginary motor tasks while 

the EEG records the channels (time series). 

Tasks (1) S003_R3: A target appears on the left or right side 

of the screen. The subject opens and closes the corresponding 

fist until the target disappears. Then the subject relaxes. Tasks 

(2) S003_R4: A target appears on the left or right side of the 

screen. The subject imagines opening and closing the corre-

sponding fist until the target disappears. Then the subject 

relaxes. Tasks (3) S003_R5: A target appears on the top or 

bottom of the screen. The subject opens and closes both fists (if 

the target is on top) or both feet (if the target is on bottom) until 

the target disappears. Then the subject relaxes. Tasks (4) 

S003_R6: A target appears on the top or bottom of the screen. 

The subject imagines opening and closing both fists (if the 

target is on top) or both feet (if the target is on bottom) until the 

target disappears. Then the subject relaxes. 

2.3. DFA Method 

To understand the Detrended fluctuation analysis (DFA) 

method proposed by Peng et al. (1994), consider a correlated 

signal sample of u(i) (EEG signal), where i = 1, cdots, 

N, where N is the total number of points in the time series. 

We integrate the sign      and obtain       ∑         
   

   , where     is the average of     . The integrated 

signal     is divided into boxes (without overlap) of the 

same size   (time scale). For each box of size n, we fit yn(k) 

in each box using a first-order linear regression, which rep-

resents the trend of the box. The entire process is obtained 

using the least squares method. The integrated series      is 

subtracted from the fitted series       at each box size  . 

Afterwards, for each box of size  , the mean square root will 

be calculated (integrated signal and without trend), that is, 
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𝐹𝐷𝐹𝐴     √
 

𝑁𝑚𝑎𝑥
∑       

𝑁𝑚𝑎𝑥
         2       (1) 

The calculation is repeated for a wide range of scales, i.e. 

    
𝑁

4
  Next, the function 𝐹𝐷𝐹𝐴  characterizes a power 

law of the type 𝐹𝐷𝐹𝐴        , where  𝐷𝐹𝐴  will be the 

long-range correlation indicator. 

The interpretation of the relationship is given as follows: 

 𝐷𝐹𝐴      (antpersistent),  𝐷𝐹𝐴      (uncorrelated while 

noise),  𝐷𝐹𝐴      (long-range correlated persistent), 

 𝐷𝐹𝐴      (
 

  
       ,  𝐷𝐹𝐴      (non-stationary) e 

 𝐷𝐹𝐴      (brownian noise). 

At this stage, the 𝐹𝐷𝐹𝐴  method enables the detection of 

long-range correlation and self-affinity embedded in appar-

ently non-stationary time series and, above all, avoids the 

spurious detection of long-range correlations. Works that cite 

the DFA method [7, 10, 11, 15-20]. 

2.4. Rms Function 

The proposal of the mean square fluctuation function (rms) by 

Florêncio, Zebende and Juan, 2017, arises from the idea of 

measuring the difference in the amplitude of the fluctuation 

between two EEG channels (temporal coherence) [10]. The tool 

is an addition to the DFA method and has proven to be very 

useful for analyzing electrophysiological signals. Using the rms 

function, we can study how much two regions of the brain are 

correlated for the same scale and generalize to all points distrib-

uted in the brain. In practice, we calculate FDFA of two time series 

generated by the EEG signal and its logarithm individually, then 

subtract the result from the logarithms, see equation (2). 

∆𝑙 𝑔𝐹32,𝑥𝑥 ≡ ∆𝑙 𝑔𝐹𝐷𝐹𝐴−32 − ∆𝑙𝑜𝑔𝐹   −𝑥𝑥           (2) 

Thus, ∆𝑙 𝑔𝐹32,𝑥𝑥 gives us information about the relative 

intensity of the rms fluctuation, i.e, if. 

[i] ∆𝑙 𝑔𝐹32,𝑥𝑥 > 0, the amplitude of the rms fluctuation 

function around the channel F32 in relation to the channel xx, 

is larger; [ii] ∆𝑙 𝑔𝐹32,𝑥𝑥 = 0, the amplitude of the rms fluc-

tuation function around the channel F32 with respect to the 

channel xx, is zero; [iii] ∆𝑙 𝑔𝐹32,𝑥𝑥 < 0, the amplitude of the 

rms fluctuation function around the channel F32 in relation to 

the channel xx, is smaller. 

The first time the rms function was used in the mo-

tor/imaginary experiment available at: 

http://www.physonmet.org, compared brain activities between 

channels 32, 37, 49 and 54 (protocol 10-10) [10, 11, 13]. 

3. Results and Discussion 

With the understanding of the Detrended fluctuation analysis 

(DFA) method and the mean square fluctuation function (rms), 

subsection 2.3 and 2.4, we applied a test on 48 time series ex-

tracted from the EEG device with approximately 20,000 points at 

a sampling rate of 0.00625 seconds. All DFA and rms function 

steps were applied in experiments S003_R3, S003_R4, S003_R5 

and S003_R6, subject S003 of the public database 

www.physionet.org. The channels were chosen to cover the 

entire brain (International 10-10 system of electrode positions), 

these being channels 11, 22, 24, 32, 37, 43, 44, 49, 54, 61, 63 and 

64. 32 and 37. 32 and 37 were the reference channels for the test 

with the rms function for the simple reason that motor stimulus 

(opening and closing the hands or moving the feet) is more active 

for the frontal region. Studies that validate the frontal region as 

the most active for this motor stimulus [10, 11]. 

Figure 1 represents, as an example, all the steps used in the 

modeling up to the difference between two channels calcu-

lated by the rms function. The process was replicated for the 

48 series. In (a) we have channel 32 in red and in (b) channel 

37 in black. In (c) the DFA method was applied to the series 

representing channels 32 and 37 and in (d) we calculated their 

difference. On the right of the same figure, we have an illus-

tration of the brain with the position of the electrodes used in 

the test. 

 
Figure 1. Description of the steps that lead to the interpretation of the rms function, in four stages (a, b, c and d) on the left. On the right we 

have the representation of the candidate channels, chosen to represent the regions of the brain. 
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Figure 2. Task 1 and 2, experiment S003_R3 and S003_R4. 

  
Figure 3. Task 3 and 4, experiment S003_R5 and S003_R6. 

In figures 2 and 3 we have the responses found with the 

DFA method and the rms function. In S003_R3, observing 

channel 32 in relation to the others. For small time scales (  ≤ 

4), the difference was evident for 32 x 22 with ∆log > 0 and 32 

x 64 with ∆log < 0. The others showed variation around zero. 

The proportion that increases the scale (10 <   < 100), with 

the exception of 32 x 24, the difference is positive. For large 

scales (  > 1000), 32 x 24 we observed a difference around 

zero. In terms of reference,   = 100 corresponds to   1.0 

minutes. This same behavior was observed in S003_R3, 

channel 37 in relation to the others. 

The same analysis was done with S003_R4, for channels 32 

and 37 in relation to the others. We can see here similar 

characteristics in the plot and behavior of the curves. One 

caveat for 32 x 44 and 37 x 44, which were more evident in 

terms of fluctuation. S003_R5 and S003_R6 followed the 

same line of analysis. 

What we observed in these eight behaviors involving the 

imaginary real stimulus for subject S003 is that the response 

presented did not show great differences between performing 

a task and imagining performing a task. It is worth noting here 

that the base has 109 subjects who perform the motor test. 

Here we are only testing the ability to understand the tech-

nique with the commitment to replicate it for other neuro-

logical stimuli. 

4. Conclusion 

In this test, we seek to describe all the steps that lead to the 

understanding of the synchrony and organization of the 

patterns of electrical activity in the brain between regions 

(lobes: Frontal, Parietal, Temporal and Occipital) through 

the root mean square (rms) fluctuation function (∆log), from 

two reference channels. To model the steps, we chose a data 

set with EEG recordings (BCI2000 - 

http://www.bci2000.org) of approximately two minutes, a 

sample subject (S003), four tasks and 12 channels distrib-

uted throughout the brain. 

In common with the literature, we evaluated the two most 
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active channels 32 and 37 (greatest fluctuation). We measured 

the autocorrelations and verified that these differences for the 

real / imaginary motor response (temporal coherence) vary 

with the increase in scale. The results of the difference in 

fluctuation amplitude can be seen in Figures 2 and 3 with the 

difference between channels 32 and 37 in relation to the others 

(11, 22, 24, 43, 44, 49, 54, 61, 63 and 64). 

Finally, for this step, we showed that it is possible to rep-

licate the technique for a larger number of subjects, and we 

understand that it becomes another strategy to understand 

brain coherence using EEG data. 

Abbreviations 

BCI Brain Computer Interface 

EDF  European Data Format 

EEG Electroencephalogram 

DFA Detrended Fluctuation Analysis 

rms  Mean Square Fluctuation Function 

DDP Potential Difference 
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