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Abstract: This work develops the structure of A∞-algebras on operad theory and also the preservation of this structure by
a morphism of operads well defined. This structure defined here is motivated by the important role that play certain particular
properties such as multiplication and connectivity on the operads. Another key ingredient used to develop this work is the brace
operations; which, combined with the properties cited above allowed to better frame the study of this structure. Thus, this
paper show explicitly the existence of an A∞-algebra structure on any connected multiplicative operad endowed with its brace
operations and that this structure is minimal if the operad is only multiplicative. Furthermore, the paper also shows the existence
of an operads morphism from an unital associative operad,Ass to any connected multiplicative operadO preserving the structure
of A∞-algebras existing on these two operads. And when the operad O is just multiplicative then there is rather a morphism of
operads from the associative operad, As to O preserving this time the minimal A∞-algebras structure existing on these operads.
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1. Introduction

Operads are algebraic devices which encode types of
algebras. They are very important in categories with a well
notion of homotopy where they are useful for the study of
homotopy invariant algebraic structures and hierarchies of
higher homotopies. One can already see its trace in the paper
of Lazard [15] entitled group laws and analyzers, the basic
idea of operads has mainly been developed in Chicago in the
seventies by the algebraic topologists (S. MacLane [20], J.
Stashef [7], J. P. May [10], J. M. Boardmann, R. Vogt [12],
F. R. Cohen [6]) to study loop spaces. Moreover, instead
of describing algebras by its generators(operations) and the
relatives relations(fundamental identities), one may consider
all operations that can be performed on a finite number of
variables and the relations between these operations. This
structure has been baptized by J. P. May: Operad structure.
The main interest of this point of view resides on the fact that
one may liken algebras even if they are of different natures.

Furthermore A∞-algebras (sha algebras = strongly
homotopy associative algebras) were invented at the beginning

of the sixties by J. Stashef [8] as a tool in the study of group-
like topological spaces. In the subsequent two decades, A∞-
structures found applications and developments in homotopy
theory (see [9, 10, 12]). Their use remains essentially confined
to this subject [5, 21]. This changes at the beginning of
the nineties when the relevance of A∞-structures in algebra,
geometry and mathematical physics became more and more
apparent (cf. e.g. [4, 8, 14]).

This paper uses a connected multiplicative operad from
which is defined a face homomorphism. This gives us a
chain complex endowed with an appropriate product denoted
�. Using the up mentioned materials, the construction
of A∞-algebra structure on the operad O yields. This
algebraic structure becomes minimal when the operad is
only multiplicative. The work ends by constructing an

homomorphism of operads Ass
f−→ O (respectively As

f−→
O) that preserves A∞-algebra structures(respectively minimal
A∞-algebra structures). Here Ass(respectively Ass) is a
unitary associative operad(respectively associative operad)
while O is a given connected multiplicative(respectively
multiplicative) operad.



73 Batkam Mbatchou Vane Jacky III and Calvin Tcheka: Structure on Connected Multiplicative Operad

The organization of the paper is as follows: the section
2 gives a general reminders on operads and the last section
develops the mains results of the work.

2. General Reminders on Operads

2.1. Conventions and Notation

In the sequel,
1. K denotes an arbitrary field. Vector spaces, tensor

products and linear maps are defined over K unless
otherwise stated.

2. For a given connected multiplicative operad O with
multiplication m and 10 ∈ O(0), let us assume by
convention in this work that

m ◦1 10 = 1O = m ◦2 10. (1)

2.2. Operad and Right-brace Structure on Operad

In this section, K is the arbitrary ground field and all the
work is in the catgory of vector space VectK.

2.2.1. Operad
Operads considered here are over the monoidal category of

K-vector spaces. Such operads are said to be symmetric(Σ-
operad) if they are equipped with a right action of symmetric
groups Σ = {Σn, n ∈ N} and non symmetric(non Σ-operad)
if not. In this section, one can recall the fundamental notions
on operads over the category VectK and their related properties.
One can refer to [2, 11, 16] for more details.

Definition 2.1. A symmetric operad(Σ-operad or operad) is
a collection of right

∑
-vector spaces over K, {O(k)|k ≥ 1},

together with a composition product:

O(k)⊗O(n1)⊗ · · · ⊗ O(nk)
γO−→ O(n1 + · · ·+ nk)

x⊗ x1 ⊗ · · · ⊗ xk 7−→ γO(x;x1, · · · , xk)

which satisfies the following axioms:
1. associativity axiom;
2. axiom of unity;
3. Σ-equivariant ([2, 11, 16]).

Definition 2.2. Consider O and O′ two Σ-operads with
respective composition products γO and γO

′
and respective

associated unities 1O and 1O′ .O
f−→ O′ is called morphism

of operads if the collection {fn : O(n) −→ O′(n)}n≥0 of
∑

-
K-vector space homomorphisms satisfies:

1. f(1O) = 1O′ ;
2. fj(γO(x0⊗ x1⊗ ...⊗ xn)) = γO

′
(fn(x0)⊗ fi1(x1)⊗

...⊗ fin(xn)) with j = i1 + i2 + ...+ in;
3. fn(x ∗ σ) = fn(x) ∗ σ, with γ(x ∗ σ; a1, · · · , an) =
γ(x; aσ−1(1), · · · , aσ−1(n)), for some x ⊗ ak1 ⊗ · · · ⊗
akn ∈ O(n)⊗O(k1)⊗ · · · ⊗ O(kn) and σ ∈ Σn.

Remark 2.1. 1. Equivalentely a Σ-operad can also be

defined by the so called partial composition

O(m)⊗O(n)
◦i−→ O(m+ n− 1) m ≥ i ≥ 1

x⊗ y 7−→ x ◦i y

satisfying some properties (see [3] for explicit axioms)
The two definitions are related as follows:

x ◦i y = γO(x;

m−tuple︷ ︸︸ ︷
id, · · · , y︸︷︷︸

i

· · · id, );m ≥ i ≥ 1. (2)

2. An operad, O, is said to be multiplicative if there is an
element of degree 2, m ∈ O(2) such that m ◦1 m =
m ◦2 m or m{m} = 0.

3. An operad O is said to be connected if O(0) is
isomorphic to the ground field K. In the sequel to avoid
confusion, denote by 10 = 1K the unit in O(0)

4. Consider a connected operad O. It has been shown in
[3] that for all S ⊂ [n] = {1, 2, · · · , n},with cardinality
l < n, O is endowed with a degeneracy map |S defined
as follows:

|S : O(n) −→ O(l)
p 7→ p |S= p(x1, ..., xn),

,

where xi =

{
11 if i ∈ S
10 if not

In particular for n ∈ N − {0} and 1 ≤ i ≤ n, set
Si = [n]−{i} = {1, 2, · · · , i−1, î, i+1, · · · , n}, where
î means that the natural number i has been omitted.
The face map is defined for n ≥ 2 as follows:

Fni =|Si : O(n) −→ O(n− 1)
p 7→ Fni (p) = p |Si

= p ◦i 10

and F 1 =|∅: O(1) −→ O(0) such that for 1O ∈ O(1),
F 1(1O) = 1O |∅= 10 ∈ O(0).
One can verify easily by straightforward computation
that the K-linear map Fni is subject to the following
properties:

FiFj = Fj−1Fi if i < j (3)

FiFj = FjFi+1 if i ≥ j (4)

(See [3] for more detail).
The fundamental example is the endomorphism operad

denoted here by LA := EndA, for an object A in the category
of K-vector spaces.

Examples 2.1. For a given associative unitary K-algebra
A with multiplication µA and unit ηA, the operad LA of
multilinear homomorphisms defined by: for all n ≥ 1,
LA(n) := HomK(A⊗n, A), is a multiplicative operad.

1. The associated operadic composition γLA is substitution
of the values of n operations in a n-ary operation as
inputs.

2. Its associated multiplication is m := µA ∈ LA(2).

3. Its associated unit element is the identity map A idA−→ A.
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2.2.2. Right-brace Structure on Operad (See [3])
Let O =

⊕
k≥0
O(k), be the sum of all components of a

connected multiplicative operad in the category of the K-
vector spaces, EK−vect.

Let us set

(O⊗n)(s) =
⊕

s1+s2+···+sn=s
O(s1)⊗O(s2)⊗· · ·⊗O(sn) (5)

for all s ∈ N,. For p ∈ O(r), the degree of p is the integer r
and it is denoted by deg(p) = r and |p| = r − 1 denotes the
degree of its suspension.

Definition 2.3. A right brace operations on any operad O is
the collection of multilinear operations defined by:

O ⊗O⊗n −→ O, n ≥ 1
p⊗ (q1 ⊗ q2 ⊗ · · · ⊗ qn) 7→ p{q1, q2, · · · , qn}

such that for p, q1, q2, · · · , qn ∈ O,

p{q1, q2, · · · , qn} =
∑

(−1)εγ(p; 1O, ..., 1O, q1, 1O, ..., 1O,

q2, 1O, ..., 1O, qn, 1O, ..., 1O), (6)

where the sum runs over all possible substitutions of
q1, q2, · · · , qn into p in the prescribed order and

ε :=

n∑
j=1

| qj | (deg(p{q1, · · · , qn})− ij)), (7)

ij being the total number of inputs in front of qj .
Thus the right braces p{q1, q2, · · · , qn} are homogeneous of

degree −n, i.e.;

deg(p{q1, q2, · · · , qn}) = deg(p) +

n∑
j=1

| qj | (8)

with the following conventions: p ◦ q := p{q} and p{} := p,
for all p, q ∈ O.

Remark 2.2. Similarly, one can also define the sign of the
right-brace as follows

ε′ :=

n∑
j=1

| qj | tj (9)

where tj is the total number of inputs after qj without count
the inputs of qj .

It is clear that the result is obtained easily:

ε and ε′ are even (or odd) in the same moment;

that is to say

(−1)ε = (−1)ε
′
.

See [3] for the following observations to highlight the
differences and analogies between the above defined right-
brace structure and the one given by Grestenhaber-Voronov.

Definition 2.4. Let O be an operad with multiplication m ∈
O(2) over the category EK−vect. The odot-product on O is a
linear map denoted � and defined by:

O ⊗O �−→ O
p⊗ q 7→ p� q := m(p, q) = (m ◦2 q) ◦1 p

= γ(m; p, q)
= (−1)s(r−1)m{p, q}

where γ is a composition product on O, p ∈ O(r) and
q ∈ O(s).

Proposition 2.1. Consider a connected multiplicative operad
O with multiplication, m ∈ O(2), endowed with a right
brace structure over the category EK−vect. Then (O,�, ∂) is
a differential graded algebra.

2.2.3. Derived Operator (See [22] for More Details)
Definition 2.5. (derivative of the face operator) Let n ∈ N∗

and 1 ≤ i ≤ n. The operator (Fni )′ = Fn+1
i+1 is called

derivative of the ith face morphism Fni .
Remark 2.3. (see [22] for more details)
LetO be a connected multiplicative operad, p > q two non-

negative integer and f : O(p) −→ O(q) an operator.
Obseve that f = Ft1 ◦Ft2 ◦ · · · ◦Ftp−q

, 1 ≤ ti ≤ p, 1 ≤ i ≤
p− q and the associated derived operator denoted f ′ is defined
as follows:

f ′ : O(p+ 1) −→ O(q + 1)

such that

f ′ = F ′t1 ◦F
′
t2 ◦ · · · ◦F

′
tp−q

, 1 ≤ ti ≤ p, 1 ≤ i ≤ p− q. (10)

Examples 2.2.

∂n =

n∑
i=1

(−1)iFni : O(n) −→ O(n− 1), (11)

then

∂′n = (

n∑
i=1

(−1)iFni )′

= (Fn1 )′ + (Fn2 )′ + ...+ (−1)n(Fnn−1)′

=

n+1∑
i=2

(−1)i−1Fn+1
i . (12)

Moreover ∂′x1 = 0 and ∂′x0 is not defined. Since ∂′n is
defined for n ≥ 2 (with ∂′x1 = 0) then it is convenient to
modify the definition in degree 1. Let us set{

∂∗nx1 = 0 if n = 1
∂∗nxn =

∑n
i=2(−1)i−1Fni xn if n ≥ 2

(13)

Thus

∂xn = −F1xn − ∂∗xn, xn ∈ O(n) (14)

with ∂∗∂∗ = 0 = ∂′∂′ in all degree.
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Proposition 2.2. Consider a connected multiplicative operad
O. Then (O,�, ∂̄?) is a differential graded algebra where
∂̄? = −∂?.

3. Main Results

This section introduce by using somes properties the A∞-
algebra structure in the framework of operads. This structure
will allow us to extend some well-known results in certain
particular cases for instance on the unital associative operad,
Ass and on the associative operad As).

3.1. Recall on A∞-algebras Structures

Definition 3.1. An A∞-algebra over a field K (also called a
‘strongly homotopy associative algebra’ or an ‘sha algebra’) is
a Z-graded vector space

A =
⊕
p∈Z

Ap

equipped with graded maps (homogeneous K-linear maps)

mn : A⊗n −→ A, n ≥ 1,

of degree n-2 such that the following relations work:
1. m1m1 = 0, i.e. (A,m1) is a complex.
2. m1m2 = m2(m1 ⊗ 1 + 1 ⊗m1) as maps A⊗2 −→ A.

Here 1 denotes the identity map of the space A. So m1

is a (graded) derivation with respect to the multiplication
m2.

3. A⊗3 m3−→ A is a K-linear map satisfying
m2(1⊗m2 −m2 ⊗ 1) =

m1m3 +m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1).
Observe that the left hand side is the associator for
m2 and that the right hand side can be viewed
as the boundary of m3 in the morphism complex
HomK(A⊗3, A). This leads that m2 is associative up
to homotopy.

4. For n ≥ 1, we have in general way∑
(−1)r+stmu(1⊗r ⊗ms ⊗ 1⊗t) = 0 (15)

with the above summation running over all
decompositions n=r+s+t and we put u=r+1 +t.

Remark 3.1. Observe that when these formulas are applied
to elements, additional signs appear because of the Koszul sign
rule: for instance,

(m1⊗1 + 1⊗m1)(x⊗y) = m1(x)⊗y+ (−1)|x|x⊗m1(y).
(16)

Therefore m1 ⊗ 1 + 1 ⊗m1 is the usual differential on the
tensor product.

Hereafter are given some immediate results of the above
definition:

(1) An A∞-algebra A is not associative but its homology

H∗A = H∗(A,m1) is an associative graded algebra for
the multiplication induced by mA

2 .
(2) If Ap = 0 for all p 6= 0, then A = A0 is an ordinary

associative algebra. Indeed, since mn is of degree n-2,
all mn other than m2 vanish.

(3) If mn vanishes for all n ≥ 3, then A is an
associative differential Z-graded algebra and conversely
each associative differential Z-graded algebra yields an
A∞-algebra with mn = 0 for all n ≥ 3.

Definition 3.2. An A∞-algebra is said to be minimal if its
differential m1 vanishes.

Theorem 3.1. (Kadeishvili [24], see also [1, 13, 17, 18, 19,
23]). For all A∞-algebra A, the homology H∗A has an A∞-
algebra structure such that

1) m1 = 0 and m2 is induced by mA
2 , the product on A.

2) there exists a quasi-isomorphism of A∞-algebras
H∗A→ A lifting the identity of H∗A.

3.2. A∞-algebra Structure on Connected Multiplicative
Operad

Unless otherwise stated, operads in this section are equipped
with its right-brace structure and any operad will be connected
multiplicative.

Theorem 3.2. Consider a connected multiplicative operadO
with multiplication m. There is an A∞-algebra structure on O
given by the set of morphisms {mn}n≥1 of degree n-2 defined
as follows

1. m1 is the boundary operator ∂̄?.

m1 : O → O

x 7→ m1x = ∂̄∗x = −
n∑
i=2

(−1)i−1Fni x

2. m2 is the product � that is to say

m2 : O ⊗O −→ O

such that

m2(x⊗ y) = x� y
= (−1)|y|degxm{x, y}
= γ(m;x, y)

= m(x, y).

3. Since m is the multiplication of the operad O i.e.,
m ◦1 m = m ◦2 m, then define the morphism m3 as
follows: for x ∈ O(p), y ∈ O(q) and z ∈ O(r),

m3 : O ⊗O ⊗O −→ O
x⊗ y ⊗ z 7→ m3(x⊗ y ⊗ z) = (−1)(p+q−1)r(m ◦1
m){x� y, z} = (−1)(p+q−1)r(m ◦1m){m2(x⊗ y), z}

4. The generalization of the definition of mn for n ≥ 4 is
as follows: for all xi ∈ O(pi), 1 ≤ i ≤ n,
mn(x1 ⊗ · · · ⊗ xn)=(−1)|mn−1(x1⊗···⊗xn−1)|pn(m ◦1

m){mn−1(x1 ⊗ · · · ⊗ xn−1), xn}.
Moreover, if the operad O is not connected, one may set
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m1 = 0 and the structure of A∞-algebra on O becomes
minimal, that is, any multiplicative operad has a minimal A∞-
algebra structure.

Proof It just suffices to show that the sequence {mn}n≥1
of morphism with deg(mn) = n − 2 satisfy the following
conditions

(a) m1m1 = 0
(b) m1m2 = m2(m1 ⊗ 1 + 1⊗m1)
(c) m2(1 ⊗m2 −m2 ⊗ 1) = m1m3 + m3(m1 ⊗ 1 ⊗ 1 +

1⊗m1 ⊗ 1 + 1⊗ 1⊗m1)
(d) More generally

∑
(−1)r+stmu(1⊗r ⊗ms ⊗ 1⊗t) = 0,

for n ≥ 4, where the sum runs over all decompositions
n=r+s+t and we put u=r+1+t.

Since (O,� = m2, ∂̄? = m1) is a differential graded
algebra, conditions (a) and (b) are satisfied.

Now, let us show condition (c).
Consider x ∈ O(p), y ∈ O(q), z ∈ O(r). Since m is the

multiplication of operad one can have

[m2(1⊗m2 −m2 ⊗ 1)](x⊗ y ⊗ z)=m2(x⊗m2(y ⊗ z))−m2(m2(x⊗ y)⊗ z) = m(x,m(y, z))−m(m(x, y), z)
=(m ◦2 m)(x⊗ y ⊗ z)− (m ◦1 m)(x⊗ y ⊗ z)=(m ◦2 m−m ◦1 m)(x⊗ y ⊗ z)=0.

Since m2(1⊗m2 −m2 ⊗ 1) = 0, it remains to show that m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1) +m1m3 = 0. Thus,
one can have:

1. computation of m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1)
[m3(m1⊗1⊗1+1⊗m1⊗1+1⊗1⊗m1)](x⊗y⊗z)m3[m1(x)⊗y⊗z+(−1)px⊗m1(y)⊗z+(−1)p+qx⊗y⊗m1(z)]

=m3(∂̄∗x⊗ y ⊗ z)︸ ︷︷ ︸
(1)

+ (−1)pm3(x⊗ ∂̄∗y ⊗ z)︸ ︷︷ ︸
(2)

+ (−1)p+qm3(x⊗ y ⊗ ∂̄∗z)︸ ︷︷ ︸
(3)

.

Step by step, let us compute (1), (2) and (3).
(3) = (−1)p+qm3(x⊗ y ⊗ ∂̄∗z) = (−1)p+q(−1)(p+q−1)(r−1)(m ◦1 m){x�, z}

=(−1)(p+q−1)r+1(m ◦1 m){m(x, y), z}
=(−1)r+1m(m(m(x, y), ∂̄∗z), 1O)︸ ︷︷ ︸

(a)

−m(m(m(x, y), 1O), ∂̄∗z)︸ ︷︷ ︸
(b)

+ (−1)p+qm(m(1O,m(x, y)), ∂̄∗z)︸ ︷︷ ︸
(c)

.

(2) = (−1)pm3(x⊗ ∂̄∗y ⊗ z) = (−1)p+(p+q)r(m ◦1 m){x� ∂̄∗y, z}
=(−1)p+(p+q)r(m ◦1 m){m(x, ∂̄∗y), z}

=(−1)p+(p+q)r[(−1)(p+q)(r+1)+(r−1)m(m(m(x, ∂̄∗y), z), 1O)
+(−1)(p+q−2)(r+1)m(m(m(x, ∂̄∗y), 1O), z) + (−1)(p+q−2)rm(m(1O,m(x, ∂̄∗y)), z)]

=(−1)q+r−1m(m(m(x, ∂̄∗y), z), 1O)︸ ︷︷ ︸
(d)

+ (−1)qm(m(m(x, ∂̄∗y), 1O), z)︸ ︷︷ ︸
(e)

+ (−1)pm(m(1O,m(x, ∂̄∗y)), z)︸ ︷︷ ︸
(f)

.

(1) = m3(∂̄∗x⊗ y ⊗ z) = (−1)(p+q−2)r(m ◦1 m){∂̄∗x� y, z}
=(−1)(p+q)r(m ◦1 m){m(∂̄∗x, y), z} = (−1)(p+q)r[(−1)(p+q−2)(r+1)+(r−1)m(m(m(∂̄∗x, y), z), 1O)

+(−1)(p+q−2)(r+1)m(m(m(∂̄∗x, y), 1O), z) + (−1)(p+q−2)rm(m(1O,m(∂̄∗x, y)), z)]
=(−1)q+q+r−1m(m(m(∂̄∗x, y), z), 1O)︸ ︷︷ ︸

(g)

+ (−1)p+qm(m(m(∂̄∗x, y), 1O), z)︸ ︷︷ ︸
(h)

+m(m(1O,m(∂̄∗x, y)), z)︸ ︷︷ ︸
(i)

.

2. Hereafter the computation of the last term m1m3

(m1m3)(x⊗ y ⊗ z) = (−1)(p+q−1)rm1[(m ◦1 m){x� y, z}]
=(−1)(p+q−1)rm1[(m ◦1 m){m(x, y), z}] = (−1)(p+q−1)rm1[(−1)(p+q)(r+1)m(m(m(x, y), z), 1O) +

(−1)(p+q−1)(r+1)m(m(m(x, y), 1O), z) + (−1)(p+q−1)rm(m(1O,m(x, y)), z)]
=(−1)q+q+r∂̄∗[m(m(m(x, y), z), 1O)]︸ ︷︷ ︸

(1′)

+ (−1)p+q−1∂̄∗[m(m(m(x, y), 1O), z)]︸ ︷︷ ︸
(2′)

+ ∂̄∗[m(m(1O,m(x, y)), z)]︸ ︷︷ ︸
(3′)

.

Step by step, one may compute (1’), (2’) and (3’)
(1′) = (−1)q+q+r∂̄∗[m(m(m(x, y), z), 1O)]

=(−1)q+q+r[m(m(∂̄∗m(x, y), z), 1O) + (−1)p+qm(m(m(x, y), ∂̄∗z), 1O) + (−1)p+q+rm(m(m(x, y), z), ∂̄∗1O︸ ︷︷ ︸
=0

)]

=(−1)p+q+rm(m(m(∂̄∗x, y), z), 1O)︸ ︷︷ ︸
(g′)

+ (−1)q+rm(m(m(x, ∂̄∗y), z), 1O)︸ ︷︷ ︸
(d′)

+ (−1)rm(m(m(x, y), ∂̄∗z), 1O)︸ ︷︷ ︸
(a′)

.

(2′) = (−1)p+q−1∂̄∗[m(m(m(x, y), 1O), z)]
=(−1)p+q−1m(m(m(∂̄∗x, y), 1O), z)︸ ︷︷ ︸

(h′)

+ (−1)q−1m(m(m(x, ∂̄∗y), 1O), z)︸ ︷︷ ︸
(e′)

+−m(m(m(x, y), 1O), ∂̄∗z)︸ ︷︷ ︸
(b′)

.

(3′) = ∂̄∗[m(m(1O,m(x, y)), z)]
= −m(m(1O,m(∂̄∗x, y)), z)︸ ︷︷ ︸

(i′)

+ (−1)p+1m(m(1O,m(x, ∂̄∗y)), z)︸ ︷︷ ︸
(f ′)

+ (−1)p+q+1m(m(1O,m(x, y)), ∂̄∗z)︸ ︷︷ ︸
(c′)

.

Comparing the two results obtained in 1 and 2, notice that (a)+(a’)=0 until (i)+(i’)=0 so the equality
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m2(1⊗m2 −m2 ⊗ 1) = m1m3 +m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1)

works.

Moreover, by using the associativity of the right brace and
the one of the multiplication m of operad, it is clearly easy
to show that

∑
(−1)r+stmu(1⊗r ⊗ ms ⊗ 1⊗t) = 0, for

n = r + s+ t ≥ 4.
Examples 3.1. There are too many examples of operad with

an A∞-algebra structure for instance:
1. the unital associative operad, Ass = {K[Sn], n ≥ 0}

has a A∞-algebra structure.
2. For a given associative K-algebra A, the reduced

endomorphism operad L̄A = {L̄A(n)}n≥0 defined as
follows

L̄A(n) = HomK(A⊗n, A), if n ≥ 1

L̄A(0) = K

has a A∞-algebra structure.
3. The associative operad, As = {K[Sn], n ≥ 1} has a

minimal A∞-algebra structure.
4. For a given associative K-algebra A, the endomorphism

operad

LA = {LA(n)}n≥0 = {HomK(A⊗n, A)}n≥0

has a minimal A∞-algebra structure.
Proposition 3.1. Consider a connected multiplicative operad
O. There is a morphism of operads f : Ass −→ O which

preserves the A∞-algebras structures. Moreover the operad
O is just multiplicative, then There is a morphism of operads
f : As −→ O which preserves the minimal A∞-algebras
structures.

Proof If the operad O is connected multiplicative then there
is an operads morphism f : Ass → O defined as follows:

f0 = Id : K→ K
f1 = η : K→ O(1), the unit map of operad

f2 : K[
∑

2]→ O(2);
∑

2 = {id = (12), τ = (21)}

σ 7→
{
m if σ = id
τm if σ = τ

If n ≥ 3, then fn is induced by f2 and the fact that m is
associative. For instance if n=3, one have f3 : σ ∈

∑
3 7→

σγO2 (f2 ⊗ η ⊗ f2). Thus, for n ≥ 4

fn = γO2 (f2 ⊗ η ⊗ fn−1).

For all n ∈ N∗, fn is a map in LinK = Evect and f preserves
the unit (because f1(1K) = η(1K) which is the unit element of
operad O). By definition f is compatible with the composition
products onAss andO. Therefore f = {fn}n≥1 : Ass −→ O
is a morphism of operads.

So it suffices to show the compatibility of that morphism
with the structures of (minimal) A∞-algebras on Ass (or As)
and O i.e., the following equation

mOn ◦ (ft1 ⊗ · · · ⊗ ftn) = fu ◦mn

works, with u = t1 + · · · tn + n− 2. Let σi ∈ Ass(ti), 1 ≤ i ≤ n then

[mOn ◦ (ft1 ⊗ · · · ⊗ ftn)](σ1 ⊗ · · · ⊗ σn) = mOn (ft1(σ1)⊗ · · · ⊗ ftn(σn))

=(−1)|m
O
n−1(ft1 (σ1)⊗···⊗ftn−1

(σn−1))|tn(m ◦1 m){mn−1(ft1(σ1)⊗ · · · ⊗ ftn−1
(σn−1)), ftn(σn)}.

Moreover, for the multiplication τ = (12) of operad Ass, note that

(fu ◦mn)(σ1 ⊗ · · · ⊗ σn) = (−1)|mn−1(σ1⊗···⊗σn−1)|tnfu[(τ ◦1 τ){mn−1(σ1 ⊗ · · · ⊗ σn−1), σn}]
=(−1)|mn−1(σ1⊗···⊗σn−1)|tnf3((τ ◦1 τ)){fu−tn−3(mn−1(σ1 ⊗ · · · ⊗ σn−1)), ftn(σn), [since f morphism of operads i.e.,

f(γ(x; y1, · · · , yn)) = γ′(fn(x), ft1(y1), · · · , ftn(yn))]
=(−1)|mn−1(σ1⊗···⊗σn−1)|tn(m ◦1 m){mn−1(ft1(σ1)⊗ · · · ⊗ ftn−1

(σn−1)), ftn(σn)},
[since f3((τ ◦1 τ)) = f2(τ) ◦1 f2(τ) = m ◦1 m]

=[mOn ◦ (ft1 ⊗ · · · ⊗ ftn)](σ1 ⊗ · · · ⊗ σn).

Thus, by using recurssive definition of mn−1 and the
morphism of operads f it is easy to have the result.

4. Conclusion

This paper was about studying the structure of A∞-
algebras on operads. In order to achieve this, the properties
of multiplication and connectivity on the operads and the
definition of brace operations played a very important role.

This structure defined on the operads extends or add the
new algebraic structure in certain particular cases such as for
example the operads given in examples 3.1.
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TEICHMÜLLER Groups, vol 19, A. M. S, Book in
preparation, (December 2012).

[3] Batkam Mbatchou V. Jacky III, Calvin Tcheka, Simplicial
Structure on Connected Multiplicative Operads (Arxiv).

[4] E. Getzler, J. D. S. Jones, A∞-algebras and the cyclic bar
complex, Illinois J. Math. 34 (1990), 256-283.

[5] E. Skoldberg, (Co)homology of monomial algebras, Ph.
D. Thesis, Stockholm University, 1997

[6] F. R. Cohen, The homology of Cn+1-spaces, n 0, Springer
Lect. Notes in Math. 533 (1976), 207-351.

[7] J. D. Stasheff, Homotopy associativity of H-spaces, I., II,
Trans. Amer. Math. Soc. 108 (1963), 275-312.

[8] J. D. Stashef, Differential graded Lie algebras, Quasi-
Hopf algebras, and higher homotopy algebras, Quantum
Groups, Proc. workshops, Euler Int. Math. Inst.,
Leningrad 1990, Lecture Notes in Mathematics 1510,
Springer 1992, 120-137.

[9] J. F. Adams, Infinite loop spaces, Ann. of Math. Stud.,
Vol. 90, Princeton Univ. Press, Princeton, N. J., 1978.

[10] J. P. May, The geometry of iterated loop spaces, Springer
Lecture Notes in Math. 271, 1972.

[11] J. L. Loday and B. Valette, Algebraic Operads, Version
0.999, Book, (18 January 2012).

[12] J. M. Boardman, R. Vogt, Homotopy invariant algebraic
structures on topological spaces, Springer Lect. Notes in
Math. 347, 1973.

[13] L. Johansson, L. Lambe, Transferring Algebra Structures
Up to Homology Equivalence, Preprint, 1996, to appear
in Math. Scand.

[14] J. McCleary (Ed.), Higher homotopy structures in
topology and mathematical physics, Contemp. Math.,
227, Amer. Math. Soc., Providence, RI, 1999.

[15] M. Lazard, Lois de groupes et analyseurs, Ann. Sci. Ec.
Norm. Sup. Paris 62 ( 1955), 299-400.

[16] M. Livernet and F. Patras, Lie theory for Hopf operads,
journal of Algebra, (2008), 319, 4899-4920.

[17] V. A. Smirnov, Homology of fiber spaces (Russian),
Uspekhi Mat. Nauk 35 (1980), 227-230. Translated in
Russ. Math. Surveys 35 (1980), 294-298.

[18] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff,
Perturbation theory in differential homological algebra II,
Illinois J. Math. 35 (1991), 357-373.

[19] S. A. Merkulov, Strong homotopy algebras of a Kähler
manifold, available at http://xxx.lanl.gov/abs/math.AG/
9809172

[20] S. Maclane, Categories for the working mathematician,
Springer Graduate Text in Maths 5, 1971.

[21] S. Ovsienko, On derived categories of representations
categories, in: XVIII Allunion algebraic conference,
Proceedings, Part II, Kishinev, (1985), 71.

[22] S. Eilenberg and S. Mac Lane, On the Groups H(π, n),
Annals of Mathematics, Second Series, Vol. 58, No. 1
(Jul., 1953), pp. 55-106

[23] T. V. Kadeishvili, On the theory of homology of fiber
spaces (Russian), Uspekhi Mat. Nauk 35 (1980), 183-
188. Translated in Russ. Math. Surv. 35 (1980), 231-238.

[24] T. V. Kadeishvili, The algebraic structure in the homology
of an A(∞)-algebra (Russian), Soobshch. Akad. Nauk
Gruzin. SSR 108 (1982), 249-252.


