

Mathematics and Computer Science
2021; 6(3): 49-58

http://www.sciencepublishinggroup.com/j/mcs

doi: 10.11648/j.mcs.20210603.12

ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

Enhancing Parallel Scheduling of Grid Jobs in a Multicored
Environment

Goodhead Tomvie Abraham
1
, Evans Fiebibiseighe Osaisai

2
, Abalaba Ineyekineye

2

1Computer Science Department, Niger Delta University, Yenagoa, Nigeria
2Mathematics Department, Niger Delta University, Yenagoa, Nigeria

Email address:

To cite this article:
Goodhead Tomvie Abraham, Evans Fiebibiseighe Osaisai, Abalaba Ineyekineye. Enhancing Parallel Scheduling of Grid Jobs in a Multicored

Environment. Mathematics and Computer Science. Vol. 6, No. 3, 2021, pp. 49-58. doi: 10.11648/j.mcs.20210603.12

Received: May 17, 2021; Accepted: June 9, 2021; Published: June 21, 2021

Abstract: The computing Grid has emerged as a platform to solve the complex and ever-increasing processing need of man

and advances in computing technology have birthed the multicore era aimed for high throughput and efficient parallel

computing. However, most systems still rely on the underlying hardware for parallelism despite the hard evidence that

sequential algorithms do not optimally exploit parallel systems. This research seeks to harness the benefits of multicore

systems using job and machine grouping methods to enhance parallelism in the scheduling of Grid jobs. The paper presents the

result of two separate experiments on a method that parallelize scheduling algorithm on two multicore platforms. An arbitrary

method was employed to group machines; a summation of the total processing power of machines in each group was made. To

ensure load balancing, jobs were allocated to machine groups based on the ratio of the total processing power of the machines

in each group. The MinMin Grid scheduling algorithm was implemented independently within the groups using a range of

threads varied in powers of two. Also, the numbers of groups were varied between 2, 4, and 8. The same experiment was

executed on a single processor computer; a duocore machine and a quadcore machine. A performance improvement of 16% to

85% was recorded by the group method against the best ordinary MinMin results and an improvement of 50% to 84% was

recorded by the group method against the ordinary MinMin on corresponding machines. We prove that an increase in the

number of groups results in improved performance on corresponding machines (approximately 2 times using 2 groups,

approximately 3 times using four groups, and approximately 6 times using 8 groups). And most importantly, we established

that as the number of processors increases, the grouping method makes more significant improvements over the ordinary

MinMin scheduling algorithm executed on the multicore systems.

Keywords: Multicore-environment, Parallelism, Multi-scheduling, Machine Grouping, Job Grouping, Scheduling

1. Introduction

The advent of Grid computing has been acclaimed as the

paradigm to solve the ever-increasing computing need of an

ever-demanding world while multicore systems have been

heralded as the major architecture choice for modern

computing platforms - this is anticipated to remain so for

long [1, 2] and [3]. However, it has been shown that

sequential algorithms do not gain much from parallel

systems if the algorithm is not Parallelized [4]. Current

Grid scheduling algorithms are mostly sequential and do

not exploit the inherent benefits in the underlying multicore

systems, while most others focus on scheduling parallel

jobs rather than scheduling jobs in parallel. Scheduling of

Grid jobs without exploiting the underlying multicore

hardware in this era of multicore systems poses a negative

trend for the growth and purpose of the Grid. The method

presented in this work provides a general means of

Parallelization of sequential algorithms. The method uses

several independent groups to enable several scheduling

instances within the group (multi-scheduling), this greatly

enhances parallelism.

The remainder of the paper is organized as follows: the next

section discusses related literature. Section 3 discusses the

proposed method and presents results and analysis. Section 4

makes recommendation and section 5 discusses conclusion

and future thoughts.

50 Goodhead Tomvie Abraham et al.: Enhancing Parallel Scheduling of Grid Jobs in a Multicored Environment

2. Related Work

The NP-completeness of heterogeneous systems requires

heuristics to ease the problem-solving. Exploiting a method

that enhances the efficiency of multicore systems for the

overall benefit of grid scheduling will be beneficial to the

growth of the Grid. Advances in computer hardware

technology are aimed at parallelizing processing, high

throughput, performance improvement, speedup, and

efficiency [5]. However, most Grid scheduling algorithms

remain sequential; such algorithms ‘eat up’ the gains in

hardware technology’, impede performance, and do not

guarantee maximum speedup [6, 7] and [4]. The multicore era,

therefore, requires a parallel approach to programming [8-10].

However, parallelizing sequential algorithms are quite

complex and not completely guaranteed. Therefore, a method

that enhances parallelism in the execution of all algorithms is

sought; grouping jobs and machines before simultaneously

scheduling independent groups (multischeduling) enhances

parallelism on the multicore systems and increases throughput

[11].

This work uses job and machine groups to exploit

parallelism on multicore systems.

2.1. Parallelism and Multicores

Serial computing is replete with drawbacks [12], multicore

technology was, therefore. the direction for future computing

interest [13] and [14]. However, major advances in

computing technology come with a paradigm shift in

programming [15]; based on calls by many researchers to

embrace parallelism; a better programming method that

enhances the performance of multicore systems should

therefore be of interest to researchers because the potentials

of multicore systems are largely being under-utilized on

current systems [7, 16, 17].

In this regard, several researchers have experimented with

the execution of algorithms on parallel systems: an

experiment was conducted on clusters of CPU-GPU to speed

up queries from high dimensional holistic data that are being

updated constantly, the experiment attained efficiency in

handling queries in [18]. A method that exploited parallel

algorithms to scale multicore systems and obtained optimal

results was presented in [19].

A method that used a code transformation to create data

parallelism latent in parallel applications to enhance resource

utilization and speedup on chips to facilitate parallelism on

the hardware was exploited in [20]. While a method that

efficiently executed (Precedence-constrained Task Graphs)

PTGs on a distributed system with heterogeneous processing

elements connected through a set of shared heterogeneous

buses was proposed in [21].

A novel framework that automatically, efficiently, and

recursively computes the divide and conquer algorithms for a

set of dynamic programming problems in multicore systems

was exploited in [22]. In the same vein, optimization in

energy consumption and improvement in schedule length

was achieved by employing a parallelizing scheduling

method to find a solution to the duplication-based scheduling

problem in [23]. Also, an experiment on parallel

programming paradigms like OpenMP on CPU cluster and

CUDA on GPU cluster using (Breadth-First Search) BFS and

(Depth-First Search) DFS graph algorithm that attained a

speedup of 187 to 240 by CUDA on GPU over the OpenMP

on CPU clusters was executed in [24]. They however noted

that the CPU clusters underperformed due to communication

overheads and idle time.

The gains of parallel computing systems have been

exploited by researchers in other fields as well: In

bioinformatics; parallel programming technology was

employed for genome sequence processing in [25]. In

electronics, a parallel computation method to curb the

bottleneck incurred by serial computation of CRC was

exploited in [26]. The method efficiently increased speed-up in

the computation of (cyclic redundancy check) CRC

computation on CPU and Field Programmable Gate Array

(FPGA). And in geospatial statistics; parallelism was exploited

on a parallel hardware architecture in the computation of

environmental data in [27] and [28].

Though these researches all aimed at attaining throughput,

speed-up, and optimize processing on parallel architecture;

no special method was employed to enhance parallelism.

However, optimal exploitation of parallel architecture

requires a fundamental approach to the way programming is

done [29, 30, 8, 10, 7]. This requirement necessitated the

group-based approach undertaken in this work.

2.2. Grouping of Jobs Before Scheduling

Grouping of jobs before scheduling has been used

extensively by researchers to achieve different aims. A method

that grouped fine-grained jobs to form coarse-grained jobs

before scheduling to improve response time was exploited in

[31]. A method that grouped jobs before transmitting to Grid

resources for computation was exploited in [32]. While

another method that exploited grouping to reduce the

(communication computation ratio) CCR before the schedule

was presented in [33]. Also, a method that divides the base

relation into several independent sub-cubes to reduced

exponentiality and efficiently performed queries was exploited

[18] – here, the sub-cubes are likened to groups.

In these works; parallelism dependent on the underlying

hardware; the group was used to attain optimality or

efficiency but not really in aiding parallelism.

This research employs grouping as platforms to parallelize

the scheduling of grid jobs on multicore systems. The groups

enable the threads to execute independently in multi-

scheduling of jobs within the groups - taking advantage of

the multicores.

In line with this research, significant improvement was

achieved in [11] using job and machine groups before

scheduling. However, the effect of increasing the number of

groups could not be investigated further. As a result, a

dynamic means of grouping grid jobs and grid machines for

efficient multi-scheduling was proposed in [34]. The method

recorded significant improvement with increasing groups.

 Mathematics and Computer Science 2021; 6(3): 49-58 51

Hence, various strategies to group machines and Grid jobs

before scheduling on an HPC system were experimented with

in [35] and significant improvement was recorded by all

methods as the number of groups increases. However, on the

HPC system, the number of CPUs is constant and the effect

of varying the number of processors on the grouping method

was recommended for investigation. A random machine

grouping method and size-proportional-to-speed method of

job grouping were proposed in [36] and a performance

improvement of 16% to 71% on a duocore machine was

achieved. The researchers noted that investigating further on

a system with more cores was necessary to know the effect

on the method. So, the same work was extended on a

quadcore system in [37] and an improvement of 50% to 86%.

However, the trend of improvement on both platforms

needed to be examined. This paper combines the results and

added more analysis of the separate experiments carried out

in [36] and [37].

3. Parallel Scheduling of Grid Jobs in a

‘Multicored’ Environment

This research aims at exploring the parallelism inherent in

multicore systems by using a method of job and machine

grouping. An arbitrary method was employed to group

machines; a summation of the total processing power of

machines in each group was made. To achieve load balancing,

jobs were then allocated to the machine groups based on the

ratio of the total processing power of the machines in each

group.

A range of one to eight threads in powers of two (1 to 8

step]3,2,1,0[2 ∈nn
) was used in varied experiments. Also,

the number of groups was varied between 2, 4 and 8. The

experiment was executed on a single processor system, a

duocore system and a quadcore system.

The MinMin algorithm [38] was chosen as a benchmark in

this work because it has been adopted by several other

researchers for benchmarking [39-48].

3.1. Job and Machine Grouping

The algorithms for grouping jobs and machines used in

this experiment have been presented in [36, 37].

3.2. Experimental Design

This work is based on the series of experiments carried out

in [36] and [37].

3.3. Results and Data Analysis

This section discusses results from all the experiments

from the two previous works referred in section 3. In the

discussion, 1Thrds, 2Thrds, 4Thrds or 8Thrds refer to the

number of threads used in the experiment. SingleCPU or

SingleProc, 1CPU or 1Proc refer to result obtained on the

single processor machine; duocore refers to results from the

duocore machine while Quadcore refers to results obtained

on the quadcore machine. Also, 2Grp, refers to two groups,

4Grp refers to four groups and 8Grp refers to eight groups.

The proposed method Size-Proportional-to-Speed and

random method abbreviated as SpdRnd. A combination of

group numbers, number of threads, and machines are used to

refer to a specific result. For instance, 4ThrdsDuocore4Grps

represent results obtained using 4 threads and 4 groups on the

duocore machine.

3.4. Performance of the MinMin Algorithm on the Three

Computing Platforms

This section discusses the result of the ordinary MinMin

(MinMin without the group method). Table 1 shows the results

and performance of the ordinary MinMin on the three different

computer platforms (single processor machine, duocore machine,

and quadcore machine) and the computed performance

improvements. The Single processor system took a total of

1235755 ms to schedule the range of jobs. The duocore system

used a total of 220726 ms to schedule the range of jobs while the

quadcore machine used 136818ms to schedule the same range of

jobs (from 1000 to 10,000 step 1000).

Using the ordinary MinMin, there was a performance

improvement of 5.6 times or 82% by the Duocore machine

over the Single processor machine. The quadcore machine

improved performance 9 Times or 88% over the single

processor machine. And the Quadcore machine improved

performance 1.6 times or 38% over the duocore machine.

These results show that the MinMin algorithm is scalable

and gained immensely from the multicore system’s

underlying parallelism. However, the question is are these

improvements recorded by the MinMin on the duocore and

quadcore machines enough not to try a different method that

enhances parallelism on the multicore systems? Analysis of

results in sections 3.5, 3.6, and 3.7 between the performance

of the MinMin and the group method on the multicore

systems will provide answers.

Table 1. Scheduling result of MinMin algorithm on the three machines.

Jobs Limit MinMin2Thrds (SingleCPU) MinMin2Thrds (DuoCore) MinMin4Thrds (QuadCore)

1000 4500 690 399

2000 17672 2800 1795

3000 40250 6410 4222

4000 66922 10674 7188

5000 90407 26432 9994

6000 116922 19275 12700

7000 154781 24914 16690

8000 196768 32446 21719

52 Goodhead Tomvie Abraham et al.: Enhancing Parallel Scheduling of Grid Jobs in a Multicored Environment

Jobs Limit MinMin2Thrds (SingleCPU) MinMin2Thrds (DuoCore) MinMin4Thrds (QuadCore)

9000 244679 44057 27989

10000 302854 53028 34122

Total 1235755 220726 136818

Average 123575.5 22072.6 13681.8

Improvement over Single processor system (X) 5.60 9.03

Improvement over Single processor system (%) 82.14 88.93

Improvement over Duocore system (X) 1.61

Improvement over Duocore system (%) 38.015

3.5. Analysis of Results on Corresponding Machines

This section compares the result between the MinMin and

the group method on corresponding machines.

Table 2 shows the results, computed total, Average, and

performance improvement in multiples (X) and percentage

(%) between the MinMin and the group methods on

corresponding machines. This is also shown in Figure 1

while Figure 2 shows the improvement by the group method

over the MinMin on the single processor machine, duocore

machine, and the quadcore machine.

Figure 1. Performance improvement by group method on corresponding machines.

Figure 2. Combined performance improvement by group method on corresponding machines.

 Mathematics and Computer Science 2021; 6(3): 49-58 53

On the single processor machine, the group method

performed 2.03 times, 3.76 times, and 6.01 times better than the

MinMin when executed with 2, 4, and 8 groups respectively.

This represents 50%, 73%, and 83%. This result and computed

improvement indicate that the group method performed better

than the ordinary MinMin even on the single processor system.

The linear trendline on the improvement yielded the

equation Y = 1.99x – 0.0467 and the R-Squared value of the

trendline is 0.9943.

On the duocore machine, the performance was 2.04 times,

3.66 times and 6.35 times better than the MinMin which

represents 50%, 72% and 84% when executed with 2, 4 and 8

groups respectively. The linear equation on the duocore

performance trendline Y = 2.155x – 0.2933 with the R-

squared value of 0.9799.

On the quadcore machine, the group method performed

2.03 times, 3.92 times and 6.88 times better than the MinMin

algorithm. This represents 50%, 74% and 85% when

executed with 2, 4 and 8 groups respectively. The trendline

on the improvement yielded equation Y = 2.4x – 0.54 and the

R-Squared value of the trendline is 0.9852.

The correlation of results and improvements between the

group method and MinMin on corresponding machines is

(0.99) which indicates that the group methods results are

strongly reliable and acceptable.

The linear equations indicate that performance

improvement Y depends on the number of groups (x) and

increases with an increase in the number of groups. While the

R-Squared value of 0.9x on the trendlines indicates a good fit,

it also indicates the reliability and repeatability of the results.

Even though the MinMin is also scalable, the result indicates

that the group method improves the performance of the parallel

architectures (multicore systems) by an approximate factor of 2

when using two groups, an approximate factor of 3 when using

four groups and an approximate factor of 6 when using 8 groups.

Figure 2 and the linear equations generated from the

improvement trendline from the three computing platforms

indicate that there is a general performance improvement

with increasing cores.

Table 2. Analysis of corresponding results and performance.

Single Processor Duocore Quadcore

MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps

1000 4500 2360 1094 594 690 375 319 95 403 189 111 78

2000 17672 7907 3876 2031 2800 1360 617 331 1775 759 337 196

3000 40250 17031 9063 4360 6410 2628 1334 609 4203 1543 648 396

4000 66922 28468 13656 9359 10674 4665 2138 1575 7431 2570 1297 671

5000 90407 40453 22672 12985 26432 7680 3832 2323 9903 4339 1928 1178

6000 116922 59781 32578 19062 19275 9607 5481 2927 12984 6433 3089 1568

7000 154781 79499 42047 26234 24914 14322 7888 4864 16872 9079 4315 2361

8000 196768 94781 54172 34453 32446 17156 9967 5672 21956 11261 5758 2855

9000 244679 119609 67438 41250 44057 22976 12796 7273 27778 14340 7082 4506

10000 302854 157970 82423 55282 53028 27406 15921 9080 34570 17385 10593 6379

Total 1235755 607859 329019 205610 220726 108175 60293 34749 137875 67898 35158 20188

Avg 123576 60785.9 32902 20561 22073 10817.5 6029 3474.9 13787.5 6789.8 3515.8 2018.8

Improvement (X) 2.03 3.7 6.01 (X) 2.04 3.66 6.35 (X) 2.03 3.92 6.83

Improvement (%) 50 73 83 (%) 50 72 84 (%) 50 74 85

3.6. Comparison of Result on the Three Computing

Platforms Against the Best MinMin Result

This section compares the best ordinary MinMin result

(obtained on the quadcore) against the group method result

from other platforms. On the three computing platforms, the

ordinary MinMin result from the quadcore machine was the

best. Hence, the ordinary MinMin result yielded by execution

on the quadcore system was used.

Table 3 shows the result and computed total scheduling

time of the ordinary MinMin algorithm executed on the

quadcore compared against results of the group method from

the three platforms. It also shows the computed total and

average time used in scheduling the range of jobs. While

Table 4 and Table 5 shows the computed performance

improvement between the machines in multiples (X) and in

percentage (%) respectively.

From Table 4 and Table 5, the MinMin algorithm executed

on a quadcore system performed better than the group

method executed on the single processor system by 4.40

times, 2.37 times and 1.51 times (or 77%, 57% and 33%)

when using two, four and eight groups respectively. This is

shown in the first part of Figure 3 labeled A to B (and Figure

4 labeled Single processor). As the number of groups

increases, it can be seen that the graph was falling from left

to right – this indicates that the group method was able to

increase performance as the number of groups increases –

though not enough to match the performance improvement of

the MinMin on the quadcore machine.

This result indicates that the MinMin algorithm is scalable

and benefitted from parallelism on the quadcore while the

group method executed on the single processor system

underperformed due to the absence of parallelism which the

method requires but could not be supported by the single

processor system. The group method targets multicore

systems, so it is not suited for single processor systems.

The second part of the graph in Figure 3 and Figure 4

(labelled C to D or duocore) shows the performance of the

duocore system using the group method over the ordinary

MinMin executed on the quadcore. The group method on the

54 Goodhead Tomvie Abraham et al.: Enhancing Parallel Scheduling of Grid Jobs in a Multicored Environment

duocore performed better than the MinMin by 1.21 times,

2.04 times and 3.56 times (or 16%, 49% and 71%) when

using two, four and eight groups respectively for scheduling.

This caused the aggregate graph to rise at a point beginning

from duocore 2 groups and continued to rise to duocore 8

groups.

The group method exploited the parallelism inherent on

the Duocore system and this resulted in the improved

performance over the ordinary MinMin algorithm executed

on quadcore.

Points E to F in Figure 3 (shown as quadcore in Figure 4)

shows the performance of the quadcore system over the

ordinary MinMin as the group increases from 2 to 8 groups.

The quadcore machine recorded performance improvement

of 2.03 times, 3.98 times and 7.10 times (or 50%, 74% and

85%) over the MinMin when using 2, 4 and 8 groups

respectively.

This analysis indicates that performance improvement is

attained both by an increase in the number of groups and an

increase in the number of cores.

Figure 3. Performance trend among between the systems.

Figure 4. Aggregate performance.

 Mathematics and Computer Science 2021; 6(3): 49-58 55

Table 3. Experiment results from three computing platforms.

No of Jobs
Quadcore Single Processor Duocore Quadcore

MinMin 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps

1000 403 2360 1094 594 375 319 95 189 111 78

2000 1775 7907 3876 2031 1360 617 331 759 337 196

3000 4203 17031 9063 4360 2628 1334 609 1543 648 396

4000 7431 28468 13656 9359 4665 2138 1575 2570 1297 671

5000 9903 40453 22672 12985 7680 3832 2323 4339 1928 1178

6000 12984 59781 32578 19062 9607 5481 2927 6433 3089 1568

7000 16872 79499 42047 26234 14322 7888 4864 9079 4315 2361

8000 21956 94781 54172 34453 17156 9967 5672 11261 5758 2855

9000 27778 119609 67438 41250 22976 12796 7273 14340 7082 4506

10000 34570 157970 82423 55282 27406 15921 9080 17385 10593 6379

Total 137875 607859 329019 205610 108175 60293 34749 67898 35158 20188

Avg 13787.5 60785.9 32901.9 20561 10817.5 6029.3 3474.9 6789.8 3515.8 2018.8

Table 4. Combined Improvement Analysis in Multiples (X).

Combined Improvement Analysis in Multiples

Single Processor Duocore Quadcore

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps

1 Threads 4.37 2.36 1.53 1.29 2.22 3.95 2.03 4.07 6.96

2 Threads 4.41 2.39 1.49 1.27 2.29 3.97 2.03 3.92 6.83

4 Threads 4.43 2.38 1.52 1.07 1.61 2.76 2.03 3.96 7.52

Aggreg. Improvement 4.40 2.37 1.51 1.21 2.04 3.56 2.03 3.98 7.10

Table 5. Combined Improvement Analysis in percentage (%).

Combined Improvement Analysis in Percentage

Single Processor Duocore Quadcore

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps

1 Threads 77.13 57.56 34.80 22.26 54.87 74.69 50.82 75.42 85.64

2 Threads 77.32 58.10 32.94 21.54 56.27 74.80 50.75 74.50 85.36

4 Threads 77.44 57.93 34.10 6.87 37.76 63.78 50.83 74.73 86.70

Aggregate Improvement 77.30 57.86 33.95 16.89 49.64 71.09 50.80 74.88 85.90

3.7. General Discussion on the Results

The experiments were conducted on a different set of

computer systems running on CPUs from a different family

with different internal architecture, different clock speeds,

different memory access patterns, different cache coherence,

different levels of hit rate. As a result, the overall result

cannot be normalized due to differences in factors that

determine the performance of a computer’s processor.

However, the results and measured performance

improvement were strongly correlated (0.99), also, the R-

Squared value of the performance improvement on each

machine was high (0.9x), thus indicating a high degree of

correctness and reliability.

From the analysis, we demonstrated that by placing

machines and independent jobs into groups before

simultaneously multischeduling in parallel enhances the

overall scheduling time. We find that with increased groups,

the performance of the grouping method continues to

improve against the ordinary MinMin on the multicore

systems. We also find that there was a general increase in

performance as the number of cores increases.

Relying on the underlying multicore system for parallelism

is not the best for scheduling and processing - especially

when the algorithm is sequential. However, our findings

showed that the ordinary MinMin algorithm is scalable and

performed better on the quadcore machine, then on the

duocore machine and least on the single processor machine.

Also, the MinMin on the quadcore performed better than the

group method executed on a single processor system. This is

because the MinMin algorithm scaled up on the quadcore

machine while the single processor system offered but

minimal parallelism for threads execution required by the

group method.

On the multicore machines, the group method performed

far better than the ordinary MinMin correspondingly and also

when measured against the best MinMin result obtained from

the quadcore. Although all the machines are not timed at the

same speed, we can conclude from the analysis that the group

method increases parallelism which resulted in improved

performance as the number of groups increases and also as

the number of cores increases.

The results and improvement analysis were highly

correlated (0.99) and a plot of performance improvement on

corresponding machines yielded a linear trend with increasing

function and also with a high R-Squared value of 0.99. This

high R-Squared value indicates a very good fit. It also

indicates the reliability and predictability of the method.

Generally, it shows that using more groups will continue to

improve the performance of scheduling algorithms on

multicore systems and also that machines with more cores will

guarantee better performance over machines with fewer cores.

56 Goodhead Tomvie Abraham et al.: Enhancing Parallel Scheduling of Grid Jobs in a Multicored Environment

4. Recommendations

Results and analysis have shown that serial algorithms do

not fully exploit parallelism on multicore systems. It has also

been shown that serial algorithms are not completely

parallelizable, for the grid to attain its goals, efforts aimed at

scaling the scheduling and processing of Grid jobs in line

with the ready benefits of the multicore systems should be

encouraged.

The result and analysis from this experiment indicate that

grouping jobs and machines before scheduling greatly

enhances improvement on multicore systems. Therefore, we

recommend that performance improvement methods like the

group method be integrated into job scheduling and

processing in the Grid.

5. Conclusion

This work combined the experiments in our previous work

using the group method on three different computing

platforms. The aim is to enhance the scheduling of Grid jobs

by exploiting parallelism on multicore systems. On the single

processor, the group method recorded 50%, 73% and 83%. Or

2.03, 3.76, and 6.01 Times improvement over the MinMin when

executed with 2, 4 and 8 groups respectively.

On the duocore machine, the group method performed 50%,

72% and 84% or 2.04, 3.66, and 6.35 Times better than the

MinMin when executed with 2, 4 and 8 groups respectively.

On the quadcore, the group method performed 50%, 74%

and 85% or 2.03, 3.92, and 6.88 Times better than the

MinMin algorithm.

All results are strongly correlated and the trendline through

the performance graph has a very high R-squared value –

representing a perfect fit.

We conclude that the group method enhances the

performance of multicore systems. We also conclude that the

group method directly improves performance of multicore

systems as the number of cores increases.

Future Thoughts

This research enhances the scheduling of Grid jobs using a

novel independent machine and job grouping method and

multischeduling. Load balancing was ensured between

groups using the proportion of total processing power of

machines in the group.

The experiment was executed with a sequential (MinMin)

scheduling algorithm. The algorithm was found to be

scalable on the multicore systems but scheduling was greatly

improved using the group method. In the future, the work can

be extended to parallel scheduling algorithms.

This experiment targets the Grid and also uses data from

the grid workload archive, giving the close relationship

between grid computing and cloud computing, in the future,

we hope to adapt the work for the cloud.

The result cannot be standardized because the experiment

was executed on systems with different features and family

of processors, to standardize the result, the experiment should

be executed on a set of systems from the same family of CPU

that shares the same features.

Based on the linearity of performance improvement with

increasing groups through the computing platforms, we

intend to explore further the number of groups used and

extrapolate the limit to be able to proffer other solutions.

From the result and analysis, we intend to carry out a

performance measure of the three systems by keeping some

parameters constant while varying the machine. This will

give an idea of the performance measure between the three

systems.

References

[1] A. Chervenak, I. Foster, C. Kesselman, C. and Salisbury, and S.
Tueke, “The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets,” Journal of
Network and Computer Applications, vol. 23, no. 3, pp. 187–200,
2000, Accessed: Mar. 04, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S10848045009
01103.

[2] D. Klusáček, H. Rudová, R. Baraglia, M. Pasquali, and G.
Capannini, “Comparison Of Multi-Criteria Scheduling
Techniques,” in Grid Computing, Springer US, 2008, pp. 173–
184.

[3] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M.
Prieto, “Survey of scheduling techniques for addressing
shared in multicore processors,” ACM Reference Format, vol.
45, no. 4, Nov. 2012, doi: 10.1145/2379776.2379780.

[4] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in AFIPS
Conference Proceedings - 1967 Spring Joint Computer
Conference, AFIPS 1967, Apr. 1967, pp. 483–485, doi:
10.1145/1465482.1465560.

[5] C. Kessler, U. Dastgeer, and L. Li, “Optimized Composition:
Generating Efficient Code for Heterogeneous Systems from
Multi-Variant Components, Skeletons and Containers,”
Skeletons and Containers. arXiv preprint arXiv, vol.
1405.2915, May 2014, Accessed: Mar. 06, 2020. [Online].
Available: http://arxiv.org/abs/1405.2915.

[6] J. Larus, “Spending Moore’s dividend,” in Communications of
the ACM, May 2009, vol. 52, no. 5, pp. 62–69, doi:
10.1145/1506409.1506425.

[7] M. Gebremedhin, “Automatic and Explicit Parallelization
Approaches for Equation Based Mathematical Modeling and
Simulation,” 2018, Accessed: Apr. 21, 2021. [Online].
Available: https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1265975.

[8] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B.
Chapman, “High performance computing using MPI and
OpenMP on multi-core parallel systems,” Parallel Computing,
vol. 37, no. 9, pp. 562–575, 2011, doi:
10.1016/j.parco.2011.02.002.

[9] B. Mustafa, S. and Rafiya, and A. Waseem, “Parallel
Implementattion of Doolittle Algorithm using OpenMP for
multicore machines,” in 2015 IEEE International Advance
Computing Conference, 2015, pp. 575–578.

 Mathematics and Computer Science 2021; 6(3): 49-58 57

[10] P. Tendulkar, “Mapping and Scheduling on Multi-core
Processors using SMT Solvers,” 2014.

[11] G. T. Abraham, A. and James, and N. Yaacob, “Priority-
grouping method for parallel multi-scheduling in Grid,”
Journal of Computer and System Sciences, vol. 81, no. 6, pp.
943–957, 2015, doi: 10.1016/j.jcss.2014.12.009.

[12] S. A. Mirsoleimani, A. Karami, and F. Khunjush, “A parallel
memetic algorithm on GPU to solve the task scheduling
problem in heterogeneous environments,” in GECCO 2013 -
Proceedings of the 2013 Genetic and Evolutionary
Computation Conference, 2013, pp. 1181–1188, doi:
10.1145/2463372.2463518.

[13] F. Peper, “The End of Moore’s Law: Opportunities for Natural
Computing?,” New Generation Computing, vol. 35, no. 3, pp.
253–269, Jul. 2017, doi: 10.1007/s00354-017-0020-4.

[14] B. Schauer, “Discovery Guides Multicore Processors-A
Necessity,” 2008. Accessed: Mar. 05, 2020. [Online].
Available: http://www.netrino.com/node/91.

[15] G. Bell, “Bell’s law for the birth and death of computer
classes: A theory of the computer’s evolution,” IEEE Solid-
State Circuits Society Newsletter, vol. 13, no. 4, pp. 8–19,
2008.

[16] S. Eyerman and L. Eeckhout, “Modeling critical sections in
Amdahl’s law and its implications for multicore design,” in
Proceedings - International Symposium on Computer
Architecture, 2010, pp. 362–370, doi:
10.1145/1815961.1816011.

[17] N. Shavit, “Data structures in the multicore age,”
Communications of the ACM, vol. 54, no. 3, pp. 76–84, Mar.
2011, doi: 10.1145/1897852.1897873.

[18] L. Silva, “Computing data cubes over GPU clusters.,” 2018,
Accessed: Mar. 04, 2020. [Online]. Available:
https://www.monografias.ufop.br/handle/35400000/1527.

[19] Y. Ngoko and D. Trystram, “Enhancing the undergraduate
curriculum, Performance, concurrency and programming on
modern platform,” in Topics in Parallel and Distributed
Computing, vol. 1st Edition, 2018, pp. 337-undefined.

[20] R. E. N. Bin, S. Balakrishna, Y. Jo, S. Krishnamoorthy, K.
Agrawal, and M. Kulkarni, “Extracting SIMD parallelism
from recursive task-parallel programs,” ACM Transactions on
Parallel Computing, vol. 6, no. 4, pp. 1–37, Dec. 2019, doi:
10.1145/3365663.

[21] S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha,
“Contention-aware optimal scheduling of real-time
precedence-constrained task graphs on heterogeneous
distributed systems,” Journal of Systems Architecture, vol.
105, p. 101706, May 2020, doi: 10.1016/j.sysarc.2019.101706.

[22] M. M. Javanmard, Z. Ahmad, M. Kong, L.-N. Pouchet, R.
Chowdhury, and R. Harrison, “Deriving parametric multi-way
recursive divide-and-conquer dynamic programming
algorithms using polyhedral compilers,” in Proceedings of the
18th ACM/IEEE International Symposium on Code
Generation and Optimization, Feb. 2020, pp. 317–329, doi:
10.1145/3368826.3377916.

[23] Q. Tang, L.-H. Zhu, J. Lian, L. Zhou, and J.-B. Wei, “An
efficient multi-functional duplication-based scheduling
framework for multiprocessor systems,” The Journal of
Supercomputing, pp. 1–26, Feb. 2020, doi: 10.1007/s11227-

020-03208-y.

[24] B. N., Chandrashekhar, H. A., and Sanjay, and T. Srinivas,
“Performance Analysis of Parallel Programming Paradigms
on CPU-GPU Clusters,” in International Conference on
Artificial Intelligence and Smart Systems (ICAIS), 2021, pp.
646–651, Accessed: Apr. 19, 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9395977/.

[25] Y. Zou, Y. Zhu, Y. Li, F.-X. Wu, and J. Wang, “Parallel
computing for genome sequence processing,” Briefings in
Bioinformatics, Apr. 2021, doi: 10.1093/bib/bbab070.

[26] D. Tran, S. Aslam, N. Gorius, and G. Nehmetallah, “Parallel
Computation of CRC-Code on an FPGA Platform for High
Data Throughput,” Electronics, vol. 10, no. 7, p. 866, 2021,
Accessed: Apr. 23, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/7/866.

[27] M. Salvana et al., “High Performance Multivariate Geospatial
Statistics on Manycore Systems,” IEEE Transactions on
Parallel and Distributed Systems, 2021, doi:
10.1109/TPDS.2021.3071423.

[28] F. Baig, “High Performance Spatial and Spatio-Temporal Big
Data Processing,” 2021. Accessed: Apr. 23, 2021. [Online].

[29] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I.
August, “Revisiting the sequential programming model for the
multicore era,” IEEE Micro, vol. 28, no. 1, pp. 12–20, Jan.
2008, doi: 10.1109/MM.2008.13.

[30] S. H. Fuller and L. I. Millett, The future of computing
performance: Game over or next level? National Academies
Press, 2011.

[31] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R.
Yahyapour, and A. Streit, “On Advantages of Grid Computing
for Parallel Job Scheduling,” in 2nd IEEE/ACM International
symposium on Cluster Computing and the Grid, 2002, pp.
339–39, Accessed: Mar. 09, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/1540439/.

[32] N. Muthuvelu, J. Liu, L. Soe, S. Venugopal, A. Sulistio, and R.
Buyya, “A Dynamic Job Grouping-Based Scheduling for
Deploying Applications with Fine-Grained Tasks on Global
Grids,” in Australian Workshop on Grid computing and e-
research, 2005, pp. 41–48, Accessed: Mar. 09, 2020. [Online].
Available: https://dl.acm.org/citation.cfm?id=1082297.

[33] V. K. Soni, R. and Sharma, and K. Mishra, Manoj, Grouping-
based job scheduling model in grid computing, vol. 41. 2010.

[34] G. T. Abraham, A. and James, and N. Yaacob, “Group-based
Parallel Multi-scheduler for Grid computing,” Future
Generation Computer Systems, vol. 50, pp. 140–153, 2015,
doi: 10.1016/j.future.2015.01.012.

[35] G. T. Abraham, “Group-based parallel multi-scheduling
methods for grid computing,” Coventry University, 2016.

[36] G. T. Abraham and E. F. Osaisai, “Parallel Scheduling of Grid
Jobs on Duo-core Systems Using Grouping Method,”
International Journal of Current Research, vol. in Publica.

[37] G. T. Abraham, E. F. and Osaisai, and N. Dienagha “Parallel
Scheduling of Grid Jobs on Quadcore Systems Using
Grouping Methods,” Asian Journal of Research in Computer
Science, vol. 8, no. 4, pp. 21–34, 2021, [Online]. Available:
https://doi.org/10.9734/ajrcos/2021/v8i430207.

58 Goodhead Tomvie Abraham et al.: Enhancing Parallel Scheduling of Grid Jobs in a Multicored Environment

[38] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on nonidentical processors,”
Journal of the ACM, vol. 24, no. 2, pp. 280–289, 1977,
Accessed: May 06, 2021. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/322003.322011.

[39] S. Nesmachnow and M. Canabé, “GPU implementations of
scheduling heuristics for heterogeneous computing
environments,” 2011, Accessed: Mar. 09, 2020. [Online].
Available: http://sedici.unlp.edu.ar/handle/10915/18652.

[40] M. Canabe and S. Nesmachnow, “Parallel implementations of
the MinMin heterogeneous computing scheduler in GPU,”
CLEI Electronic Journal, vol. 15, no. 3, pp. 8–8, 2012,
Accessed: Feb. 10, 2020. [Online]. Available:
http://www.scielo.edu.uy/scielo.php?pid=S0717-
50002012000300009&script=sci_arttext&tlng=pt.

[41] K. Etminani and M. Naghibzadeh, “A min-min max-min
selective algorihtm for grid task scheduling,” in in 2007 3rd
IEEE/IFIP International Conference in Central Asia on
Internet, 2007, pp. 1–7, Accessed: May 06, 2021. [Online].
Available:
https://ieeexplore.ieee.org/abstract/document/4401694/.

[42] Freund Richard, Taylor Kidd, Hensgen Debbie, and Lantz
Moore, “SmartNet: a scheduling framework for heterogeneous
computing,” in Second International Symposium on Parallel
Architectures, Algorithms and Networks (IEEE 96), 1996, pp.
514–521, Accessed: May 06, 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/509034/.

[43] M. Lavanya, B. and Shanthi, and S. Saravanan, “Multi
objective task scheduling algorithm based on SLA and
processing time suitable for cloud environment,” Computer
Communications, vol. 151, pp. 183–195, 2020, Accessed:
May 06, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S014036641
930492X.

[44] M. Maheswaran, S. Ali, H. Siegel, D. and Hensgen, and R. F.
Freund, “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, vol. 59, no. 2, pp. 107–131, 1999,
Accessed: May 06, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S074373159
9915812.

[45] S. K. Mishra and B. Sahoo, “Load balancing in cloud
computing: A big picture,” Journal of King Saud University -
Computer and Information Sciences, vol. 32, no. 2, pp. 149–
158, 2020, Accessed: May 06, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S131915781
7303361.

[46] F. Pinel, B. Dorronsoro, and P. Bouvry, “Solving very large
instances of the scheduling of independent tasks problem on
the GPU,” Journal of Parallel and Distributed Computing, vol.
73, no. 1, pp. 101–110, 2012, doi: 10.1016/j.jpdc.2012.02.018.

[47] Zhou, Z., Li, F., Zhu, H., Xie, H., Jemal, H. A. and, &
Morshed, U. C. (2020). An improved genetic algorithm using
greedy strategy toward task scheduling optimization in cloud
environments. Neural Computing and Applications, 32 (6),
1531–1541. https://link.springer.com/article/10.1007/s00521-
019-04119-7

[48] Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., &
Prieto, M. (2012). Survey of scheduling techniques for
addressing shared in multicore processors. ACM Reference
Format, 45 (4). https://doi.org/10.1145/2379776.2379780

