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Abstract: The computing Grid has emerged as a platform to solve the complex and ever-increasing processing need of man 

and advances in computing technology have birthed the multicore era aimed for high throughput and efficient parallel 

computing. However, most systems still rely on the underlying hardware for parallelism despite the hard evidence that 

sequential algorithms do not optimally exploit parallel systems. This research seeks to harness the benefits of multicore 

systems using job and machine grouping methods to enhance parallelism in the scheduling of Grid jobs. The paper presents the 

result of two separate experiments on a method that parallelize scheduling algorithm on two multicore platforms. An arbitrary 

method was employed to group machines; a summation of the total processing power of machines in each group was made. To 

ensure load balancing, jobs were allocated to machine groups based on the ratio of the total processing power of the machines 

in each group. The MinMin Grid scheduling algorithm was implemented independently within the groups using a range of 

threads varied in powers of two. Also, the numbers of groups were varied between 2, 4, and 8. The same experiment was 

executed on a single processor computer; a duocore machine and a quadcore machine. A performance improvement of 16% to 

85% was recorded by the group method against the best ordinary MinMin results and an improvement of 50% to 84% was 

recorded by the group method against the ordinary MinMin on corresponding machines. We prove that an increase in the 

number of groups results in improved performance on corresponding machines (approximately 2 times using 2 groups, 

approximately 3 times using four groups, and approximately 6 times using 8 groups). And most importantly, we established 

that as the number of processors increases, the grouping method makes more significant improvements over the ordinary 

MinMin scheduling algorithm executed on the multicore systems. 
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1. Introduction 

The advent of Grid computing has been acclaimed as the 

paradigm to solve the ever-increasing computing need of an 

ever-demanding world while multicore systems have been 

heralded as the major architecture choice for modern 

computing platforms - this is anticipated to remain so for 

long [1, 2] and [3]. However, it has been shown that 

sequential algorithms do not gain much from parallel 

systems if the algorithm is not Parallelized [4]. Current 

Grid scheduling algorithms are mostly sequential and do 

not exploit the inherent benefits in the underlying multicore 

systems, while most others focus on scheduling parallel 

jobs rather than scheduling jobs in parallel. Scheduling of 

Grid jobs without exploiting the underlying multicore 

hardware in this era of multicore systems poses a negative 

trend for the growth and purpose of the Grid. The method 

presented in this work provides a general means of 

Parallelization of sequential algorithms. The method uses 

several independent groups to enable several scheduling 

instances within the group (multi-scheduling), this greatly 

enhances parallelism. 

The remainder of the paper is organized as follows: the next 

section discusses related literature. Section 3 discusses the 

proposed method and presents results and analysis. Section 4 

makes recommendation and section 5 discusses conclusion 

and future thoughts. 
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2. Related Work 

The NP-completeness of heterogeneous systems requires 

heuristics to ease the problem-solving. Exploiting a method 

that enhances the efficiency of multicore systems for the 

overall benefit of grid scheduling will be beneficial to the 

growth of the Grid. Advances in computer hardware 

technology are aimed at parallelizing processing, high 

throughput, performance improvement, speedup, and 

efficiency [5]. However, most Grid scheduling algorithms 

remain sequential; such algorithms ‘eat up’ the gains in 

hardware technology’, impede performance, and do not 

guarantee maximum speedup [6, 7] and [4]. The multicore era, 

therefore, requires a parallel approach to programming [8-10]. 

However, parallelizing sequential algorithms are quite 

complex and not completely guaranteed. Therefore, a method 

that enhances parallelism in the execution of all algorithms is 

sought; grouping jobs and machines before simultaneously 

scheduling independent groups (multischeduling) enhances 

parallelism on the multicore systems and increases throughput 

[11]. 

This work uses job and machine groups to exploit 

parallelism on multicore systems. 

2.1. Parallelism and Multicores 

Serial computing is replete with drawbacks [12], multicore 

technology was, therefore. the direction for future computing 

interest [13] and [14]. However, major advances in 

computing technology come with a paradigm shift in 

programming [15]; based on calls by many researchers to 

embrace parallelism; a better programming method that 

enhances the performance of multicore systems should 

therefore be of interest to researchers because the potentials 

of multicore systems are largely being under-utilized on 

current systems [7, 16, 17]. 

In this regard, several researchers have experimented with 

the execution of algorithms on parallel systems: an 

experiment was conducted on clusters of CPU-GPU to speed 

up queries from high dimensional holistic data that are being 

updated constantly, the experiment attained efficiency in 

handling queries in [18]. A method that exploited parallel 

algorithms to scale multicore systems and obtained optimal 

results was presented in [19].  

A method that used a code transformation to create data 

parallelism latent in parallel applications to enhance resource 

utilization and speedup on chips to facilitate parallelism on 

the hardware was exploited in [20]. While a method that 

efficiently executed (Precedence-constrained Task Graphs) 

PTGs on a distributed system with heterogeneous processing 

elements connected through a set of shared heterogeneous 

buses was proposed in [21].  

A novel framework that automatically, efficiently, and 

recursively computes the divide and conquer algorithms for a 

set of dynamic programming problems in multicore systems 

was exploited in [22]. In the same vein, optimization in 

energy consumption and improvement in schedule length 

was achieved by employing a parallelizing scheduling 

method to find a solution to the duplication-based scheduling 

problem in [23]. Also, an experiment on parallel 

programming paradigms like OpenMP on CPU cluster and 

CUDA on GPU cluster using (Breadth-First Search) BFS and 

(Depth-First Search) DFS graph algorithm that attained a 

speedup of 187 to 240 by CUDA on GPU over the OpenMP 

on CPU clusters was executed in [24]. They however noted 

that the CPU clusters underperformed due to communication 

overheads and idle time. 

The gains of parallel computing systems have been 

exploited by researchers in other fields as well: In 

bioinformatics; parallel programming technology was 

employed for genome sequence processing in [25]. In 

electronics, a parallel computation method to curb the 

bottleneck incurred by serial computation of CRC was 

exploited in [26]. The method efficiently increased speed-up in 

the computation of (cyclic redundancy check) CRC 

computation on CPU and Field Programmable Gate Array 

(FPGA). And in geospatial statistics; parallelism was exploited 

on a parallel hardware architecture in the computation of 

environmental data in [27] and [28]. 

Though these researches all aimed at attaining throughput, 

speed-up, and optimize processing on parallel architecture; 

no special method was employed to enhance parallelism. 

However, optimal exploitation of parallel architecture 

requires a fundamental approach to the way programming is 

done [29, 30, 8, 10, 7]. This requirement necessitated the 

group-based approach undertaken in this work. 

2.2. Grouping of Jobs Before Scheduling 

Grouping of jobs before scheduling has been used 

extensively by researchers to achieve different aims. A method 

that grouped fine-grained jobs to form coarse-grained jobs 

before scheduling to improve response time was exploited in 

[31]. A method that grouped jobs before transmitting to Grid 

resources for computation was exploited in [32]. While 

another method that exploited grouping to reduce the 

(communication computation ratio) CCR before the schedule 

was presented in [33]. Also, a method that divides the base 

relation into several independent sub-cubes to reduced 

exponentiality and efficiently performed queries was exploited 

[18] – here, the sub-cubes are likened to groups. 

In these works; parallelism dependent on the underlying 

hardware; the group was used to attain optimality or 

efficiency but not really in aiding parallelism. 

This research employs grouping as platforms to parallelize 

the scheduling of grid jobs on multicore systems. The groups 

enable the threads to execute independently in multi-

scheduling of jobs within the groups - taking advantage of 

the multicores.  

In line with this research, significant improvement was 

achieved in [11] using job and machine groups before 

scheduling. However, the effect of increasing the number of 

groups could not be investigated further. As a result, a 

dynamic means of grouping grid jobs and grid machines for 

efficient multi-scheduling was proposed in [34]. The method 

recorded significant improvement with increasing groups. 
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Hence, various strategies to group machines and Grid jobs 

before scheduling on an HPC system were experimented with 

in [35] and significant improvement was recorded by all 

methods as the number of groups increases. However, on the 

HPC system, the number of CPUs is constant and the effect 

of varying the number of processors on the grouping method 

was recommended for investigation. A random machine 

grouping method and size-proportional-to-speed method of 

job grouping were proposed in [36] and a performance 

improvement of 16% to 71% on a duocore machine was 

achieved. The researchers noted that investigating further on 

a system with more cores was necessary to know the effect 

on the method. So, the same work was extended on a 

quadcore system in [37] and an improvement of 50% to 86%. 

However, the trend of improvement on both platforms 

needed to be examined. This paper combines the results and 

added more analysis of the separate experiments carried out 

in [36] and [37]. 

3. Parallel Scheduling of Grid Jobs in a 

‘Multicored’ Environment 

This research aims at exploring the parallelism inherent in 

multicore systems by using a method of job and machine 

grouping. An arbitrary method was employed to group 

machines; a summation of the total processing power of 

machines in each group was made. To achieve load balancing, 

jobs were then allocated to the machine groups based on the 

ratio of the total processing power of the machines in each 

group. 

A range of one to eight threads in powers of two (1 to 8 

step ]3,2,1,0[2 ∈nn
) was used in varied experiments. Also, 

the number of groups was varied between 2, 4 and 8. The 

experiment was executed on a single processor system, a 

duocore system and a quadcore system. 

The MinMin algorithm [38] was chosen as a benchmark in 

this work because it has been adopted by several other 

researchers for benchmarking [39-48]. 

3.1. Job and Machine Grouping 

The algorithms for grouping jobs and machines used in 

this experiment have been presented in [36, 37]. 

3.2. Experimental Design 

This work is based on the series of experiments carried out 

in [36] and [37]. 

3.3. Results and Data Analysis 

This section discusses results from all the experiments 

from the two previous works referred in section 3. In the 

discussion, 1Thrds, 2Thrds, 4Thrds or 8Thrds refer to the 

number of threads used in the experiment. SingleCPU or 

SingleProc, 1CPU or 1Proc refer to result obtained on the 

single processor machine; duocore refers to results from the 

duocore machine while Quadcore refers to results obtained 

on the quadcore machine. Also, 2Grp, refers to two groups, 

4Grp refers to four groups and 8Grp refers to eight groups. 

The proposed method Size-Proportional-to-Speed and 

random method abbreviated as SpdRnd. A combination of 

group numbers, number of threads, and machines are used to 

refer to a specific result. For instance, 4ThrdsDuocore4Grps 

represent results obtained using 4 threads and 4 groups on the 

duocore machine. 

3.4. Performance of the MinMin Algorithm on the Three 

Computing Platforms 

This section discusses the result of the ordinary MinMin 

(MinMin without the group method). Table 1 shows the results 

and performance of the ordinary MinMin on the three different 

computer platforms (single processor machine, duocore machine, 

and quadcore machine) and the computed performance 

improvements. The Single processor system took a total of 

1235755 ms to schedule the range of jobs. The duocore system 

used a total of 220726 ms to schedule the range of jobs while the 

quadcore machine used 136818ms to schedule the same range of 

jobs (from 1000 to 10,000 step 1000). 

Using the ordinary MinMin, there was a performance 

improvement of 5.6 times or 82% by the Duocore machine 

over the Single processor machine. The quadcore machine 

improved performance 9 Times or 88% over the single 

processor machine. And the Quadcore machine improved 

performance 1.6 times or 38% over the duocore machine. 

These results show that the MinMin algorithm is scalable 

and gained immensely from the multicore system’s 

underlying parallelism. However, the question is are these 

improvements recorded by the MinMin on the duocore and 

quadcore machines enough not to try a different method that 

enhances parallelism on the multicore systems? Analysis of 

results in sections 3.5, 3.6, and 3.7 between the performance 

of the MinMin and the group method on the multicore 

systems will provide answers. 

Table 1. Scheduling result of MinMin algorithm on the three machines. 

Jobs Limit MinMin2Thrds (SingleCPU) MinMin2Thrds (DuoCore) MinMin4Thrds (QuadCore) 

1000 4500 690 399 

2000 17672 2800 1795 

3000 40250 6410 4222 

4000 66922 10674 7188 

5000 90407 26432 9994 

6000 116922 19275 12700 

7000 154781 24914 16690 

8000 196768 32446 21719 



52 Goodhead Tomvie Abraham et al.:  Enhancing Parallel Scheduling of Grid Jobs in a Multicored Environment  

 

Jobs Limit MinMin2Thrds (SingleCPU) MinMin2Thrds (DuoCore) MinMin4Thrds (QuadCore) 

9000 244679 44057 27989 

10000 302854 53028 34122 

Total 1235755 220726 136818 

Average 123575.5 22072.6 13681.8 

Improvement over Single processor system (X) 5.60 9.03 

Improvement over Single processor system (%) 82.14 88.93 

Improvement over Duocore system (X) 1.61 

Improvement over Duocore system (%) 38.015 

 

3.5. Analysis of Results on Corresponding Machines 

This section compares the result between the MinMin and 

the group method on corresponding machines. 

Table 2 shows the results, computed total, Average, and 

performance improvement in multiples (X) and percentage 

(%) between the MinMin and the group methods on 

corresponding machines. This is also shown in Figure 1 

while Figure 2 shows the improvement by the group method 

over the MinMin on the single processor machine, duocore 

machine, and the quadcore machine. 

 

Figure 1. Performance improvement by group method on corresponding machines. 

 

Figure 2. Combined performance improvement by group method on corresponding machines. 
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On the single processor machine, the group method 

performed 2.03 times, 3.76 times, and 6.01 times better than the 

MinMin when executed with 2, 4, and 8 groups respectively. 

This represents 50%, 73%, and 83%. This result and computed 

improvement indicate that the group method performed better 

than the ordinary MinMin even on the single processor system. 

The linear trendline on the improvement yielded the 

equation Y = 1.99x – 0.0467 and the R-Squared value of the 

trendline is 0.9943. 

On the duocore machine, the performance was 2.04 times, 

3.66 times and 6.35 times better than the MinMin which 

represents 50%, 72% and 84% when executed with 2, 4 and 8 

groups respectively. The linear equation on the duocore 

performance trendline Y = 2.155x – 0.2933 with the R-

squared value of 0.9799. 

On the quadcore machine, the group method performed 

2.03 times, 3.92 times and 6.88 times better than the MinMin 

algorithm. This represents 50%, 74% and 85% when 

executed with 2, 4 and 8 groups respectively. The trendline 

on the improvement yielded equation Y = 2.4x – 0.54 and the 

R-Squared value of the trendline is 0.9852. 

The correlation of results and improvements between the 

group method and MinMin on corresponding machines is 

(0.99) which indicates that the group methods results are 

strongly reliable and acceptable. 

The linear equations indicate that performance 

improvement Y depends on the number of groups (x) and 

increases with an increase in the number of groups. While the 

R-Squared value of 0.9x on the trendlines indicates a good fit, 

it also indicates the reliability and repeatability of the results. 

Even though the MinMin is also scalable, the result indicates 

that the group method improves the performance of the parallel 

architectures (multicore systems) by an approximate factor of 2 

when using two groups, an approximate factor of 3 when using 

four groups and an approximate factor of 6 when using 8 groups. 

Figure 2 and the linear equations generated from the 

improvement trendline from the three computing platforms 

indicate that there is a general performance improvement 

with increasing cores. 

Table 2. Analysis of corresponding results and performance. 

 
Single Processor Duocore Quadcore 

MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps 

1000 4500 2360 1094 594 690 375 319 95 403 189 111 78 

2000 17672 7907 3876 2031 2800 1360 617 331 1775 759 337 196 

3000 40250 17031 9063 4360 6410 2628 1334 609 4203 1543 648 396 

4000 66922 28468 13656 9359 10674 4665 2138 1575 7431 2570 1297 671 

5000 90407 40453 22672 12985 26432 7680 3832 2323 9903 4339 1928 1178 

6000 116922 59781 32578 19062 19275 9607 5481 2927 12984 6433 3089 1568 

7000 154781 79499 42047 26234 24914 14322 7888 4864 16872 9079 4315 2361 

8000 196768 94781 54172 34453 32446 17156 9967 5672 21956 11261 5758 2855 

9000 244679 119609 67438 41250 44057 22976 12796 7273 27778 14340 7082 4506 

10000 302854 157970 82423 55282 53028 27406 15921 9080 34570 17385 10593 6379 

Total 1235755 607859 329019 205610 220726 108175 60293 34749 137875 67898 35158 20188 

Avg 123576 60785.9 32902 20561 22073 10817.5 6029 3474.9 13787.5 6789.8 3515.8 2018.8 

Improvement (X) 2.03 3.7 6.01 (X) 2.04 3.66 6.35 (X) 2.03 3.92 6.83 

Improvement (%) 50 73 83 (%) 50 72 84 (%) 50 74 85 

 

3.6. Comparison of Result on the Three Computing 

Platforms Against the Best MinMin Result 

This section compares the best ordinary MinMin result 

(obtained on the quadcore) against the group method result 

from other platforms. On the three computing platforms, the 

ordinary MinMin result from the quadcore machine was the 

best. Hence, the ordinary MinMin result yielded by execution 

on the quadcore system was used. 

Table 3 shows the result and computed total scheduling 

time of the ordinary MinMin algorithm executed on the 

quadcore compared against results of the group method from 

the three platforms. It also shows the computed total and 

average time used in scheduling the range of jobs. While 

Table 4 and Table 5 shows the computed performance 

improvement between the machines in multiples (X) and in 

percentage (%) respectively. 

From Table 4 and Table 5, the MinMin algorithm executed 

on a quadcore system performed better than the group 

method executed on the single processor system by 4.40 

times, 2.37 times and 1.51 times (or 77%, 57% and 33%) 

when using two, four and eight groups respectively. This is 

shown in the first part of Figure 3 labeled A to B (and Figure 

4 labeled Single processor). As the number of groups 

increases, it can be seen that the graph was falling from left 

to right – this indicates that the group method was able to 

increase performance as the number of groups increases – 

though not enough to match the performance improvement of 

the MinMin on the quadcore machine. 

This result indicates that the MinMin algorithm is scalable 

and benefitted from parallelism on the quadcore while the 

group method executed on the single processor system 

underperformed due to the absence of parallelism which the 

method requires but could not be supported by the single 

processor system. The group method targets multicore 

systems, so it is not suited for single processor systems. 

The second part of the graph in Figure 3 and Figure 4 

(labelled C to D or duocore) shows the performance of the 

duocore system using the group method over the ordinary 

MinMin executed on the quadcore. The group method on the 
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duocore performed better than the MinMin by 1.21 times, 

2.04 times and 3.56 times (or 16%, 49% and 71%) when 

using two, four and eight groups respectively for scheduling. 

This caused the aggregate graph to rise at a point beginning 

from duocore 2 groups and continued to rise to duocore 8 

groups. 

The group method exploited the parallelism inherent on 

the Duocore system and this resulted in the improved 

performance over the ordinary MinMin algorithm executed 

on quadcore. 

Points E to F in Figure 3 (shown as quadcore in Figure 4) 

shows the performance of the quadcore system over the 

ordinary MinMin as the group increases from 2 to 8 groups. 

The quadcore machine recorded performance improvement 

of 2.03 times, 3.98 times and 7.10 times (or 50%, 74% and 

85%) over the MinMin when using 2, 4 and 8 groups 

respectively. 

This analysis indicates that performance improvement is 

attained both by an increase in the number of groups and an 

increase in the number of cores. 

 

Figure 3. Performance trend among between the systems. 

 

Figure 4. Aggregate performance. 
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Table 3. Experiment results from three computing platforms. 

No of Jobs 
Quadcore Single Processor Duocore Quadcore 

MinMin 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1000 403 2360 1094 594 375 319 95 189 111 78 

2000 1775 7907 3876 2031 1360 617 331 759 337 196 

3000 4203 17031 9063 4360 2628 1334 609 1543 648 396 

4000 7431 28468 13656 9359 4665 2138 1575 2570 1297 671 

5000 9903 40453 22672 12985 7680 3832 2323 4339 1928 1178 

6000 12984 59781 32578 19062 9607 5481 2927 6433 3089 1568 

7000 16872 79499 42047 26234 14322 7888 4864 9079 4315 2361 

8000 21956 94781 54172 34453 17156 9967 5672 11261 5758 2855 

9000 27778 119609 67438 41250 22976 12796 7273 14340 7082 4506 

10000 34570 157970 82423 55282 27406 15921 9080 17385 10593 6379 

Total 137875 607859 329019 205610 108175 60293 34749 67898 35158 20188 

Avg 13787.5 60785.9 32901.9 20561 10817.5 6029.3 3474.9 6789.8 3515.8 2018.8 

Table 4. Combined Improvement Analysis in Multiples (X). 

Combined Improvement Analysis in Multiples 

 
Single Processor Duocore Quadcore 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1 Threads 4.37 2.36 1.53 1.29 2.22 3.95 2.03 4.07 6.96 

2 Threads 4.41 2.39 1.49 1.27 2.29 3.97 2.03 3.92 6.83 

4 Threads 4.43 2.38 1.52 1.07 1.61 2.76 2.03 3.96 7.52 

Aggreg. Improvement 4.40 2.37 1.51 1.21 2.04 3.56 2.03 3.98 7.10 

Table 5. Combined Improvement Analysis in percentage (%). 

Combined Improvement Analysis in Percentage 

 
Single Processor Duocore Quadcore 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1 Threads 77.13 57.56 34.80 22.26 54.87 74.69 50.82 75.42 85.64 

2 Threads 77.32 58.10 32.94 21.54 56.27 74.80 50.75 74.50 85.36 

4 Threads 77.44 57.93 34.10 6.87 37.76 63.78 50.83 74.73 86.70 

Aggregate Improvement 77.30 57.86 33.95 16.89 49.64 71.09 50.80 74.88 85.90 

 

3.7. General Discussion on the Results 

The experiments were conducted on a different set of 

computer systems running on CPUs from a different family 

with different internal architecture, different clock speeds, 

different memory access patterns, different cache coherence, 

different levels of hit rate. As a result, the overall result 

cannot be normalized due to differences in factors that 

determine the performance of a computer’s processor. 

However, the results and measured performance 

improvement were strongly correlated (0.99), also, the R-

Squared value of the performance improvement on each 

machine was high (0.9x), thus indicating a high degree of 

correctness and reliability. 

From the analysis, we demonstrated that by placing 

machines and independent jobs into groups before 

simultaneously multischeduling in parallel enhances the 

overall scheduling time. We find that with increased groups, 

the performance of the grouping method continues to 

improve against the ordinary MinMin on the multicore 

systems. We also find that there was a general increase in 

performance as the number of cores increases. 

Relying on the underlying multicore system for parallelism 

is not the best for scheduling and processing - especially 

when the algorithm is sequential. However, our findings 

showed that the ordinary MinMin algorithm is scalable and 

performed better on the quadcore machine, then on the 

duocore machine and least on the single processor machine. 

Also, the MinMin on the quadcore performed better than the 

group method executed on a single processor system. This is 

because the MinMin algorithm scaled up on the quadcore 

machine while the single processor system offered but 

minimal parallelism for threads execution required by the 

group method. 

On the multicore machines, the group method performed 

far better than the ordinary MinMin correspondingly and also 

when measured against the best MinMin result obtained from 

the quadcore. Although all the machines are not timed at the 

same speed, we can conclude from the analysis that the group 

method increases parallelism which resulted in improved 

performance as the number of groups increases and also as 

the number of cores increases. 

The results and improvement analysis were highly 

correlated (0.99) and a plot of performance improvement on 

corresponding machines yielded a linear trend with increasing 

function and also with a high R-Squared value of 0.99. This 

high R-Squared value indicates a very good fit. It also 

indicates the reliability and predictability of the method. 

Generally, it shows that using more groups will continue to 

improve the performance of scheduling algorithms on 

multicore systems and also that machines with more cores will 

guarantee better performance over machines with fewer cores. 
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4. Recommendations 

Results and analysis have shown that serial algorithms do 

not fully exploit parallelism on multicore systems. It has also 

been shown that serial algorithms are not completely 

parallelizable, for the grid to attain its goals, efforts aimed at 

scaling the scheduling and processing of Grid jobs in line 

with the ready benefits of the multicore systems should be 

encouraged. 

The result and analysis from this experiment indicate that 

grouping jobs and machines before scheduling greatly 

enhances improvement on multicore systems. Therefore, we 

recommend that performance improvement methods like the 

group method be integrated into job scheduling and 

processing in the Grid. 

5. Conclusion 

This work combined the experiments in our previous work 

using the group method on three different computing 

platforms. The aim is to enhance the scheduling of Grid jobs 

by exploiting parallelism on multicore systems. On the single 

processor, the group method recorded 50%, 73% and 83%. Or 

2.03, 3.76, and 6.01 Times improvement over the MinMin when 

executed with 2, 4 and 8 groups respectively.  

On the duocore machine, the group method performed 50%, 

72% and 84% or 2.04, 3.66, and 6.35 Times better than the 

MinMin when executed with 2, 4 and 8 groups respectively.  

On the quadcore, the group method performed 50%, 74% 

and 85% or 2.03, 3.92, and 6.88 Times better than the 

MinMin algorithm.  

All results are strongly correlated and the trendline through 

the performance graph has a very high R-squared value – 

representing a perfect fit.  

We conclude that the group method enhances the 

performance of multicore systems. We also conclude that the 

group method directly improves performance of multicore 

systems as the number of cores increases. 

Future Thoughts 

This research enhances the scheduling of Grid jobs using a 

novel independent machine and job grouping method and 

multischeduling. Load balancing was ensured between 

groups using the proportion of total processing power of 

machines in the group. 

The experiment was executed with a sequential (MinMin) 

scheduling algorithm. The algorithm was found to be 

scalable on the multicore systems but scheduling was greatly 

improved using the group method. In the future, the work can 

be extended to parallel scheduling algorithms. 

This experiment targets the Grid and also uses data from 

the grid workload archive, giving the close relationship 

between grid computing and cloud computing, in the future, 

we hope to adapt the work for the cloud. 

The result cannot be standardized because the experiment 

was executed on systems with different features and family 

of processors, to standardize the result, the experiment should 

be executed on a set of systems from the same family of CPU 

that shares the same features. 

Based on the linearity of performance improvement with 

increasing groups through the computing platforms, we 

intend to explore further the number of groups used and 

extrapolate the limit to be able to proffer other solutions. 

From the result and analysis, we intend to carry out a 

performance measure of the three systems by keeping some 

parameters constant while varying the machine. This will 

give an idea of the performance measure between the three 

systems. 
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