

Mathematics and Computer Science
2022; 7(1): 9-17
http://www.sciencepublishinggroup.com/j/mcs
doi: 10.11648/j.mcs.20220701.12
ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

Secure Contact Agreement Protocol for Messenger
Services Through Randomized ID Assignments

Michael Maigwa Martin Kangethe, Elisha Odira Abade

School of Computing and Informatics, University of Nairobi, Nairobi, Kenya

Email address:

To cite this article:
Michael Maigwa Martin Kangethe, Elisha Odira Abade. Secure Contact Agreement Protocol for Messenger Services Through Randomized ID

Assignments. Mathematics and Computer Science. Vol. 7, No. 1, 2022, pp. 9-17. doi: 10.11648/j.mcs.20220701.12

Received: January 27, 2022; Accepted: February 23, 2022; Published: March 4, 2022

Abstract: Messenger services have over the recent decade been the most dominant, ubiquitous, and widespread form of

communication globally. While the service has evolved to enable reliable real-time communication between people across

different technologies, there have been privacy and security concerns that were initially remediated by implementing TLS/SSL

and E2E Encryption as a standard. However, new privacy challenges and security gaps have been identified and exploited

through the capture and analysis of communication traffic metadata. These methods exploit the use of readily available advanced

machine learning and data mining algorithms to identify users’ communication networks and patterns without reading the actual

messages sent between end-users just by analyzing readily available metadata such as the sender and receiver IDs, time sent, and

communication frequency. To close these gaps the need to anonymize users’ communications while maintaining reliable contact

with each other is necessary. Randomized anonymization of metadata parameters can ensure it becomes nearly impossible for

current analytics algorithms to identify user patterns from communication traffic over time. Also, to guarantee seamless

communication between users with changing identities there needs to be a real-time contact exchange protocol enabling users to

randomly change their IDs and secretly inform other users in their contacts without the physical intervention or involvement of

the human user. This research paper proposes a solution through the use of a randomized contact reassignment and exchange

protocol by using the PKI encryption protocol to share its new identity with its existing contacts defeating the creation of

traceable logs over time.

Keywords: CID, PKI Shared Secret, E-2-E End to End, D-2-D Device to Device, MQTT, XMPP, Metadata, Protocol,

Contact Configuration Message, IoT Communications

1. Introduction

Messenger apps have evolved to adapt with the use and

advancement of IoT and mobile communications. D-2-D

(Device to Device) communication has become the backbone

architecture of most if not all messenger communication

technologies. Recently technologies such as MQTT and

XMPP have become popular amongst instant messaging

services. This has led to the adoption of end-to-end (E-2-E)

security measures that prevent interception of personal

communications. End to End encryption has been fairly

researched and implemented in current messenger services

however due to server/broker technologies internal traffic

monitoring, new security issues, and privacy gaps have been

identified. This has led to the development of advanced

machine learning and forensics approaches identified in this

paper detailing how privacy realized through E2E Encryption

can be violated. Also, there has been a concerted effort by

companies offering these services deliberately not

implementing these security solutions and or changing their

user privacy agreements exposing user communications.

Through this paper, we propose a solution to counter the above

violations and gaps by implementing anonymity and traffic

abstraction through Identity obfuscation and dynamic client

settings configuration.

2. Messenger Protocols

D-2-D communication protocols differ from conventional

Client-Server communication protocols through distributed

data processing, storage, and presentation. These technologies

decentralize the stated functions to the endpoints and leave the

10 Michael Maigwa Martin Kangethe and Elisha Odira Abade: Secure Contact Agreement Protocol for
Messenger Services Through Randomized ID Assignments

server with the task of only routing communications and in

some cases user’s Key Management, and data backup

operations. Three of the most popular technologies currently

used are the XMPP and MQTT and AMQP protocols.

MQTT (Message Queuing Telemetry Transport) protocol

developed in 1999 is a lightweight publish/subscribe

messaging protocol designed for M2M (machine to machine)

telemetry in low bandwidth environments. This protocol was

initially implemented in popular messaging apps like

WhatsApp and the earlier versions of Facebook Messenger

since its packets were small represented in bytes, and didn’t

contain too much metadata, unlike string messages. Because

MQTT clients don’t have addresses like email addresses,

phone numbers, etc. One didn’t need to assign addresses to

clients as you do with most messaging systems. This was a

good security implementation as it enabled flexible source or

clients’ anonymizations.

XMPP (Extensible Messaging and Presence Protocol)

originally named Jabber is an open communication protocol

designed for instant messaging (IM), presence information,

and contact list maintenance [3]. Based on XML (Extensible

Markup Language), it enables the near-real-time exchange of

structured data between two or more network entities [4].

Designed to be extensible, the protocol offers a multitude of

applications beyond traditional IM in the broader realm of

message-oriented middleware, including signaling for VoIP,

video, file transfer, gaming, and other uses [2]. AQMP

(Advanced Message Queuing Protocol) is an open standard

application layer protocol for message-oriented middleware.

The defining features of AMQP are message orientation,

queuing, routing including point-to-point and

publish-and-subscribe, reliability and security [5].

3. Security Implementations

Nearly all messenger protocols have the same operating

principle as the previously discussed protocols MQTT,

XMPP, and AQMP. For this, the security measures

implemented are similar in most cases and only differ in

minor details as explained below. Security implemented

discussed in this paper focuses on the following guides with

the assumption of all other factors being constant and

device-dependent:

The security of Communication: This is the prevention of

the messages between parties being intercepted and read by

any adversaries (MITM).

End-user management Security: These are the security

measures available either by default or as an option from the

protocol technologies.

Internal privacy policies implementation: These are the

measures taken by the service providers to ensure all client

communication is not only secure from adversaries but also

from those managing the services and who do have access to

the servers.

Messenger service secures their communications by

implementing End to End (E-2-E) encryption in their client

applications [1].

A. End to End Encryption

The operating principle behind the end-to-end encryption is

by having the client app generate secure symmetric keys and

session keys that will be used to communicate with other

clients using the same service provider. This prevents the

traffic from being intercepted and exposed to those managing

the service as it has become a necessary security

implementation since government agencies have become

involved in the direct interception of confidential

communications. The exchange of these keys is secured by the

use of the PKI in their initial connection.

Most services manage usage by requiring users to create

accounts while also implementing extra security as 2FA/MFA

ensuring no one user can register as another existing user. This

is the most common security implementation in all services

both public and private service providers.

Internal privacy policies implementation is always subject to

debate since those who provide the services do have access to

the communication and can without the user’s permission and

notice decide on what to intercept or log from their users’

communications and data. Privacy policies are mere promissory

agreements between the service providers and the users of their

services that are not entirely verifiable by the users which have

led to some cases of data being leaked out and analyzed by

either marketing companies or government agencies.

B. End to End Confidentiality

To ensure End to end confidentiality the following should

be evident:

1) No client data is stored in the server

2) Keys and identities are managed by the clients

3) Client CIDs are created and verified by other clients

and not the server.

4) Client IDs are verified using shared secrets.

4. Security Gaps and Threats

A. Traffic and Connection Metadata Interception

Messenger technologies have been built with the end users’

privacy in mind. However recent events indicate that the

contrary is true. Several companies providing “free”

messenger services and apps to the public have been shown to

deliberately violate users’ privacy by collecting

communications metadata that they own then offering the

metadata for sale to 3rd parties. Recent exposures of privacy

violations by Facebook’s WhatsApp are a clear example of

how companies and service providers will stop at nothing in

their effort to acquire as much intelligible data about their

users as possible [9]. These privacy violations of client

communication have led to lawsuits specifically in the case

where Facebook-owned WhatsApp was fined a record 225

million euros ($267 million) by Ireland’s data watchdog for

breaching EU data privacy rules. In an FAQ on its website,

WhatsApp states that it shares phone numbers, transaction

data, business interactions, mobile device information, IP

addresses, and other information with Facebook. It says it

does not share personal conversations, location data, or call

logs [10]. This information might sound trivial to any layman

 Mathematics and Computer Science 2022; 7(1): 9-17 11

but it is sufficient for the use of advanced analytics tools and

techniques used in the mapping of both user relationships and

communication patterns. These privacy threats can be

exploited by the service providers for profit or other nefarious

purposes by exposing innocent users to undue surveillance

and manipulation such as Facebook’s Cambridge Analytica

Scandal [16].

E-2-E encryption, Strict User 2FA, and MFA are desirable

measures in securing communications between users,

however, an existing trend has re-emerged that exposes not

only user-specific data by service providers but also

communication patterns and users’ networks and relationships.

Several cases have been exposed revealing the ability to

acquire useable information from targets without the need of

revealing the actual communication such as the Facebook

Cambridge Analytica Scandal, where in the 2010s, personal

data belonging to millions of Facebook users was collected

without their consent by British consulting firm Cambridge

Analytica, predominantly to be used for political advertising

[7]. Facebook has since acquired WhatsApp and changed its

privacy policies which allowed them to share certain user data,

like phone numbers, with the parent company Facebook [8].

Also given that we are not guaranteed E2E Encryption for

messenger services like Facebook’s (Currently Meta) privacy

policy which doesn’t offer this security by default [11], major

trust issues on personal privacy violations arise. It is also

important to note that most if not all messenger services

communication architecture is based on IoT communications

architectures and enabled protocols. This includes security

measures used. Therefore, when conducting forensics analysis

on their communications an investigator can use automated

forensics solutions including one recently proposed by Chris

Chao-Chun Cheng et al [13].

B. Metadata exposure

Messenger applications expose people's communication in

two main ways.

1) Through Traffic metadata. This is where the traffic from

the app to the service provider is interceptable. This

however doesn’t pose a great risk since the

communication and the sender-receiver information is

encrypted using E-2-E and also the application of

SSL/TLS Security.

2) The second form of security is from the inside server.

The metadata information retrievable between users

include:

3) Sender -this is the person sending a message.

4) Recipient: Person receiving the message.

5) Time: message and presence timestamp.

6) Type of Information (File/Text message).

7) Reset Keys and triggers (These are functional messages

between messenger apps used to perform a particular

background function e.g., Update user Private Key, etc.)

Different Messenger protocols represent data differently but

since the overall structure and operating principles are similar

this paper will focus on only two.

For MQTT the example where an administrator can monitor

a client is through setting the logs as shown in the pictorial

example detailing specific technologies and commands used

in this example as shown below.

1) The server used is VerneMQ Version 1.2.0 however this

still works with version 1.12.1.

2) The command used to log the client’s communication is

vmq-admin trace client client-id=”mimi” where mimi is

the CID being monitored.

Figure 1. MQTT Message Server Log.

The above picture shows the logging done by the broker

administrator of clients connected. Since the actual

message (Circled in green) can be encrypted as should, the

other client’s metadata such as the message time, CID

(highlighted in red), and the topics the client is listening to

(Highlighted in yellow), will be retrievable enabling the

12 Michael Maigwa Martin Kangethe and Elisha Odira Abade: Secure Contact Agreement Protocol for
Messenger Services Through Randomized ID Assignments

owner of the service to map all their client’s communication

patterns and relationship networks using automated

analysis tools.

For XMPP this can be done more easily than in MQTT this

is because of the appended metadata information appended to

a message as shown below.

Figure 2. XMPP Encrypted Message Stanza.

From the above message stanza example, it is intuitively

easier to know who is communicating with whom and at what

time. When intercepting messages and communication traffic

all the analyst needs to do is extract the from, to, id, seq, and

time to map out the communication patterns between

individuals.

C. Traffic Analysis

From the discussed privacy gaps discussed earlier, it is

possible to create automated traffic and pattern analysis tools

that can analyze traffic from the service and extract

previously anonymous relationships and communication

patterns. One of the several ways for extracting such

information was by the use of weighted graph networks

which computed the level of associations between

individuals communicating using GSM Message Services

and Calls [6]. The above research could be technically

abused violating privacy agreements which have been

discussed in detail thereby noting that while navigating all of

these issues will be difficult and knowing that they exist,

there is a need toward ensuring that ML is implemented for

mass surveillance in a way consistent with liberal democratic

values [15]. This is not a full-proof solution however a more

reliable technical solution is proposed in this paper.

D. Privacy Gaps Observations

In as much as people rightfully demand and require privacy

in their communications, it is noted that some systems can

violate their privacy policies without the end-users knowing or

being able to do anything about it. This is noted when either

the service provider has been compromised by an adversary or

is compliant in the violation of privacy. Also, recently there

has been researching done on available scenarios for law

enforcement investigations in exploiting these identified gaps

and methods for forensics through acquiring and processing

collected metadata [12].

From the research done the sensitive information leaked is:

1) The Client ID (CID): This will enable the interceptors to

identify individuals communicating. Since most service

providers require individuals to provide personal

information to use their services, it becomes a greater

risk if the clients using the service require stringent

levels of privacy and confidentiality either due to the

nature of their work or associations. This involves the

Sender and Receiver IDs.

2) Time: This is the time any client is online or

communicating. This information can be retrieved from

the service by mapping the times from the logs to the

ClientID data.

3) Message Type: it can be a file of text but the size of

messages can reveal a lot about clients’ communications

and the XMPP Protocol makes it easier to identify the

type since each type has its stanza.

All the above can be mapped into a database for analysis to

expose users’ communication/relationships and even in some

cases habits by the service providers.

Though privacy should be a fundamental right for every

individual company like Facebook intend to abolish E2E

Encryption as in their argument claim it protects criminals and

online predators [14]. This of course is an issue but can also be

abused by the came individuals including in recent cases

rogue regimes.

5. Proposed Solutions

Due to the earlier security gaps discussed, the objective of

the proposed solution is to prevent the analysis of secured

communication through metadata extraction, especially by the

service providers.

It is imperative to propose and implement solutions that

prevent the discussed exposure of metadata. Proposed

solutions are categorized into four problem areas:

On-demand reconfiguration of client services such as the

scanning of server configurations using QR Codes.

Randomized generation and assignment of user IDs and

listener topics for Communication protocols such as MQTT.

Message Ambiguity through ubiquity, the type of message

should not be easily identifiable. One should not easily tell

whether the message is a simple text, file shared, or functional

message.

 Mathematics and Computer Science 2022; 7(1): 9-17 13

Nontransferable Contact between people, one cannot share

contact information without the contact either knowing or

approving

A. Randomized Contact Generation and Agreement

The majority of the messenger apps require one to register

either their phone number or email to use their services. This

centralizes the client’s registration data which also makes it

hard to obfuscate identities. Some go to the extent of having

the keys also generated from the server. For

security-conscious entities that rely on extreme confidentiality.

It is necessary to hide this information. We propose the

introduction of Randomized IDs and Contact information.

Randomized IDs are user IDs that are generated at random and

abstracted from the user in a way that will allow seamless

communication between individuals while abstracting and

hiding their real Identities. The proposed protocol is detailed

below.

B. Obscurity Levels

Contacts ID randomizations in MQTT and XMPP servers

are possible if configured to allow anonymized users. With

this feature, public use for messenger apps becomes easier

since creating users will be a client process.

These levels of contact randomizations between messenger

clients enhance the security of communications privacy by

generating new random identities at random intervals.

1) Level 1: Fixed ContactID, Fixed ChatID

At this level, the client will maintain two IDs one for

contact exchange and the other for current and all

communications. The process will be achieved where a client

will have one contact they can share with the public and once

the contact has been added by another client, they will

communicate using different ID generated randomly during

the initial configuration setup of the messenger app.

2) Level 2: Fixed original ID, Changeable ChatIDs

At this level, the client will maintain two IDs one for

long-term contact exchange and the other for current and all

communications. The process will be achieved where a client

will have one contact they can share with the public and once

the contact has been added by another client, they will

communicate using different randomized changeable IDs.

3) Level 3: Single Randomized ClientIDs

At this level, the client will maintain One for all

communications. In this setup, the client will first register a

user profile during the initial app configuration. From there

the app will randomly generate new IDs and reassign them to

the ClientID configuration settings and continue

communicating using the new ID.

In both Level 2 and 3, every time the app reassigns itself a

new ID it broadcasts it to all its contacts using the PKI

infrastructure. This will ensure that whenever their clients

communicate, their traffic metadata will be nearly impossible

to associate over a while.

Figure 3. First Contact Agreement Protocol.

C. New Contact sharing

The above protocol process is executed when a new contact

is created or added. The initial contact variables are in

plaintext the security purpose is to allow any users with a clear

intention of initiating communication will be able to create

private contacts and share secure private Contact, verification,

and session keys with each other.

Start Bob:

{

ScanAliceContactQR(CIDAlice,PubKeyAlice,ContactNa

meAlice)

GenerateUsingRandom(BobAliceSharedSecret,BobAliceP

rivateKey)

EncryptUsingAlicePublicKey(BobAliceSharedSecret,Bob

14 Michael Maigwa Martin Kangethe and Elisha Odira Abade: Secure Contact Agreement Protocol for
Messenger Services Through Randomized ID Assignments

AlicePrivateKey, ContactNameBob,CIDBob,PubKeyBob)

=BobAlicePrivateContact

SendToAlice(BobPrivateContact)

}

Alice

{

Receive(BobAlicePrivateContact)

Decrypt(BobAlicePrivateContact)

=(BobAliceSharedSecret,BobAlicePrivateKey,

ContactNameBob,CIDBob,PubKeyBob)

Store(BobAliceSharedSecret,BobAlicePrivateKey,

ContactNameBob,CIDBob,PubKeyBob)

SecretHash= Hash(BobAliceSharedSecret)

SendToBob(CIDAlice, SecretHash)

}

BobGetFormAlice(CIDAlice,SecretHash)

Compare(Hash(BobAliceSharedSecret)= SecretHash)

If equal:

SendConfirm(Bob)

Else:

SendFail:

RepeatContactProtocol

End

The Variables used in this protocol are as follows:

CPub: Public Contact (Plaintext)

CBA: Private Contact Between Bob and Alice

UCBA: Updated Private Contact Between Bob and Alice.

C: CID

KP: Pub Key

KPR: Private Key

S: Shared Secret

HS: Hashed Shared Secret

CPubA ← (CIDA | KPA) (1)

CPubB ← (CIDB | KPB) (2)

CAB ← E (CB | KPB | KPRBA | SBA) KPA (3)

UCAB ← E (CB | KPB | KPRBA | SBA | HSBA) KPA (4)

Where E (Plaintext) KP is the public Key encryption using

either ECDH or RSA.

To prevent traffic analysis by automated signals intelligence

tools and algorithms, the IDs of the end-users will change at

random moments not manipulatable or predictable by the user.

That way when systems are tracking a conversation between

two parties, the identities can change without informing both

parties or signaling the change in a predictable and identifiable

way to the interceptors.

Figure 4. Contact Update.

D. Contact Update

The mode of operation will be implemented as follows:

Alice

{

AT Time (Xi)

Generate NewAliceCID

SecretHash= Hash(BobAliceSharedSecret)

EncryptUsingAliceBobPrivKey(NewAliceCID, SecretHash)

=AliceNewContact

SendToBob AliceNewContact)

X i+1 = TimeX (i+(Rand())

SetTriggerFor time(Xi+1)

}

Bob

{

GetMessagefromALICE(AliceNewContact)

If(SenderID Not in SavedContact):

Decrypt(AliceNewContact)AliceBobPrivKey

Extract: NewAliceCID, SecretHash

Compare(Hash(BobAliceSharedSecret), SecretHash)

If equal:

SendConfirm(Alice)

 Mathematics and Computer Science 2022; 7(1): 9-17 15

Else:

Reject

Else:

Decrypt(AliceNewContact)AliceBobPrivKey

Extract: NewAliceCID, SecretHash

Compare(Hash(BobAliceSharedSecret), SecretHash)

If equal:

SendConfirm(Alice)

Else:

Reject:

NotifyBob

Configuration Message

The plaintext Contact Configuration Message (CCM)

between client applications is detailed in the example below:

{

"Data":"UpdateContact",

"OCID":"mich01",

"PubKey":"923u21u12fndjf?FDf?Fdskflksdf;;sdfkdsjdshsd

jhd",

"CName":"Michael Maigwa",

"NewCID":"CN7N",

"Secret":"7e071fd9b023ed8f18458a73613a0834f6220bd5c

c50357ba3493c6040a9ea8c",

"NewSecret":"anLzYaBYZ5SREUyT",

"StegKey":"0000",

"Alg":"229T"

}

The parameters necessary for the exchange and updating of

client’s contacts are:

"Data":"UpdateContact": This will ensure the message isn’t

handled like a normal message or displayed rather the app will

update its contact Database using the values given.

"OCID":"mich01": This is the sender's original Contact ID

which the recipient will use to compare it with all contacts in

its Database. If it already exists then the app will update the

records else it will create a new contact record and notify the

sender and the user.

"PubKey":"923u21u12fndjf?FDf?Fdskflksdf;;sdfkdsjdshsd

jhd": this is the sender's public encryption key that the

recipient should use to send its Updated contact in case of

reinstallation or ID regeneration.

"NewCID":"CN7N": This is the sender's new Identity. That

should be updated to ensure the communications and records

remain updated and seamless.

"Secret":"7e071fd9b023ed8f18458a73613a0834f6220bd5c

c50357ba3493c6040a9ea8c": This is the Hash of the partial

secret or secret exchanged between the sender and receiver.

The purpose of the secret is to ensure any contact update

request that comes from any sender can be verified and

validated to have come from the true sender and not a

masqueraded or spoofed sender. Once initial contact has been

added the app will use the new contacts public Key to encrypt

the private contact details which include the Secret. Then the

process for updating the new contact will be done by first

comparing the hash of the secret associated with the stored

Original ContactID in the Database with the received Secret

Hash and if they Match it will update the contact else the

message will be rejected.

"NewSecret":"anLzYaBYZ5SREUyT": only necessary if

the sender wants to update the contact’s secret

This Contact JSON message will be encrypted using the

recipient's Public Key. This way if the sender's ID changes

even after the recipient's ID changes.

To note for a client to generate a new ID their data can

remain intact and all that needs to be sent over to the peers is a

hash of the IDs if another hash exists then the client will

generate a new ID and send its hash over the network to be

verified.

1) Random Topics Generators and Listeners

By using insecure channels such as MQTT the traffic can be

hidden in a way it will be difficult to map out by the use of

interchanging topics. It is also advisable to use hidden topics

to prevent interceptors from analyzing the traffic by using

wildcard listeners.

2) ContactID Reuse and Conflicts

Due to the sporadic random ID generation, assignment, and

the limited character sizes for each ID the probability of

reusing an already created ID increases with the number of

App users. This initially would become a challenge if there

was no E2E Encryption implementation as messages would

end up at the wrong recipient. However, this issue is already

resolved in current apps and the contact sharing protocol as

only the recipient with the valid shared key between the

recipient and sender will be able to.

3) Reconfigurable Messenger Apps

Reconfigurable apps are any applications whose server and

client settings can be dynamically changed on demand. Unlike

most current messenger apps like WhatsApp, Facebook, and

Telegram whose server settings are hardcoded, the proposed

solution is to have a messenger app whose server settings can

be changed by a simple process as scanning a QR Code. This

ensures that if by any chance a server/Service is compromised,

new settings can be sent directly to a client or posted publicly

to ensure the end-users will not need to reinstall the app thus

maintaining the data within the device and not the service

providers.

4) Encrypted Backups and Keys

All apps should be able to encrypt their internal databases

backups. This ensures complete access to uses data is only

through the app and by using correct keys and app

passwords.

E. Proof of Concept (POC) Implementation

The working proof of concept was achieved by the use of

the following technologies and their versions

Table 1. Technologies used.

Technology Version Used

Android Studio IDE 2020.3.1 Patch 2

OPEN JDK 11.0

Ubuntu 20.04

Ejabberd 20.03

Android 7, 8, 11

Gajim A GTK XMPP client 1.3.2

Spark 2.9.4

16 Michael Maigwa Martin Kangethe and Elisha Odira Abade: Secure Contact Agreement Protocol for
Messenger Services Through Randomized ID Assignments

6. Security and Expected Strength

To understand and appreciate the level of security

implemented through this protocol we must first identify the

parameters we use and quantify their complexity in terms of

exposure to cryptanalysis attacks specifically brute force.

The secret: the secret is the shared secret between the

sender and receiver when creating a connection between two

users. The security metric will be based on the number of

characters and character space per character.

The secret Hash: This is the computed hash that is shared

between contacts when verifying and updating requests from a

client. The metric in this is the likelihood to find the actual

secret from the secret Hash.

Contact Agreement exchange exposure: This is where the

app has been reversed and the adversary monitors the app's

traffic locally. The adversary will only be able to view traffic

to and from the device. Also, manipulation will only be

between the device and its contacts.

7. Advantages and Limitations

We summarize the advantages and limitations of the

proposed protocol

A. Advantages

Randomized ID/Topic Assignments: This prevents the

possibility of the target’s communication being traced A graph

within a graph is an “inset”, not an “insert”. The word

alternatively is preferred to the word “alternately” (unless you

mean something that alternates).

The simplicity of the Algorithm: Uses only three verifiable

steps for new contacts and two for existing contacts

B. Performance

1) Minimal traffic is exchanged over the network.

2) Pure E2E Exchange security only the sharing contacts

can know who’s contact belongs to whom.

C. Security

Based on the TLS/SSL Key exchange protocol.

Resistant to packet injection and replay attacks

8. Conclusion

E2E Encrypted communication in messenger services may

not be a full-proof solution to much-needed privacy since the

communication is hosted by a provider who has access to the

messenger traffic, however, if the proposed protocol is

implemented correctly, the ability to analyze the traffic and

identify patterns reduces significantly with time.

Unlike the Diffie Heilman secret Key exchange which uses

multiplicative recursive functions to compute a shared key the

proposed protocol doesn’t. it simplifies the key exchange by

generating a random value then after the contact exchange the

way to compute the secret is only done by comparing the hash

sent. With the hash of the secret stored in the contact’s record.

Another personal measure applicable to all messenger apps

is to disable the detailed notifications because other apps

might be listening to notifications and can leak out private

messages to those apps.

References

[1] Wanda, P. and J. Jie, H. (2018). “Efficient Data Security for
Mobile Instant Messenger”. TELKOMNIKA
(Telecommunication Computing Electronics and Control), 16
(3), p. 1426.

[2] Johansson, Leif (April 18, 2005). "XMPP as MOM - Greater
NOrdic MIddleware Symposium (GNOMIS)" (PDF). Oslo:
University of Stockholm. Archived from the original (PDF) on
May 10, 2011.

[3] Saint-Andre, P. (March 2011). “Extensible Messaging and
Presence Protocol (XMPP)”: Core. IETF. doi:
10.17487/RFC6120. RFC 6120. Retrieved May 4, 2014.

[4] O'Hara, J. (2007). "Toward a commodity enterprise
middleware" (PDF). ACM Queue. 5 (4): 48–55. doi:
10.1145/1255421.1255424.

[5] Michael M Kangethe, Robert Oboko. “Associations Rankings
Model for Cellular Surveillance Analysis”. Journal of
Computer Sciences and Applications. Vol. 8, No. 2, 2020, pp
40-45.

[6] Chan, Rosalie. "The Cambridge Analytica whistleblower
explains how the firm used Facebook data to sway elections".
Business Insider. Retrieved May 7, 2020.

[7] Hay Newman, L., 2021. “WhatsApp’s New Privacy Policy Just
Kicked In. Here’s What You Need to Know”. [online] Wired.
Available at:
https://www.wired.com/story/whatsapp-privacy-policy-facebo
ok-data-sharing/ [Accessed 21 July 2021].

[8] "Openfire: Plugin Developer Guide",
Download.igniterealtime.org, 2021. [Online]. Available:
http://download.igniterealtime.org/openfire/docs/latest/doc
umentation/plugin-dev-guide.html. [Accessed: 21- Jul-
2021].

[9] E. Team, "The 5 Reasons WhatsApp Could be a National
Security Risk", Groupsense.io, 2021. [Online]. Available:
https://www.groupsense.io/resources/the-5-reasons-whatsap
p-could-be-a-national-security-risk. [Accessed: 21- Jul-
2021].

[10] Sam Shead, “WhatsApp is fined $267 million for breaching EU
privacy rules”, [Accessed 3-Sep-21],
https://www.cnbc.com/2021/09/02/whatsapp-has-been-fined-2
67-million-for-breaching-eu-privacy-rules.html.

[11] Doffman, Z. (n.d.). Why You Should Stop Using Facebook
Messenger In 2021. [online] Forbes. Available at:
https://www.forbes.com/sites/zakdoffman/2021/12/30/why-ap
ple-iphone-and-google-android-users-should-stop-using-faceb
ook-messenger-app/?sh=5db6ebb7321d [Accessed 23 Feb.
2022].

[12] Dennis Wijnberg, Nhien-An Le-Khac,Identifying interception
possibilities for WhatsApp communication, Forensic Science
International: Digital Investigation, Volume 38, Supplement,
2021, 301132, ISSN 2666-2817,
https://doi.org/10.1016/j.fsidi.2021.301132.
(https://www.sciencedirect.com/science/article/pii/S26662817
21000305).

 Mathematics and Computer Science 2022; 7(1): 9-17 17

[13] Chris Chao-Chun Cheng, Chen Shi, Neil Zhenqiang Gong,
Yong Guan, LogExtractor: Extracting digital evidence from
android log messages via string and taint analysis, Forensic
Science International: Digital Investigation, Volume 37,
Supplement, 2021, 301193, ISSN 2666-2817,
https://doi.org/10.1016/j.fsidi.2021.301193.
(https://www.sciencedirect.com/science/article/pii/S26662817
21001013).

[14] Wired. (n.d.). Facebook Messenger Adds Safety Alerts—Even
in Encrypted Chats. [online] Available at:
https://www.wired.com/story/facebook-messenger-safety-alert
s-encryption/.

[15] Robbins S. (2022) Machine Learning, Mass Surveillance, and
National Security: Data, Efficacy, and Meaningful Human
Control. In: Clarke M., Henschke A., Sussex M., Legrand T.
(eds) The Palgrave Handbook of National Security. Palgrave
Macmillan, Cham.
https://doi.org/10.1007/978-3-030-53494-3_16.

[16] Confessore, N. (2018). Cambridge Analytica and Facebook:
The Scandal and the Fallout So Far. The New York Times.
[online] 4 Apr. Available at:
https://www.nytimes.com/2018/04/04/us/politics/cambridge-a
nalytica-scandal-fallout.html.

