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Abstract: For the problem of inaccurate positioning of mobile robots in complex industrial environments, a multi-sensor 

combination localization method for omnidirectional mobile robots is proposed that incorporates the unscented Kalman filter 

(UKF), Real-Time Kinematic (RTK), and Inertial Measurement Unit (IMU). Firstly, the position information of the mobile 

robot is obtained by Real-Time Kinematic (RTK) and Wheel Odometry respectively. Secondly, the inertial measurement unit 

(IMU) determines the cart yaw angle while dual RTK is proposed to solve the yaw angle in real-time. Finally, the position and 

yaw angle data are input to the unscented Kalman filter in real time. This paper proposes the F-AUKF algorithm, which 

optimizes the traditional unscented Kalman filter algorithm by introducing a forgetting factor in order to improve the 

robustness of mobile robot localization for continuous operation in complex industrial building environments. The 

experimental results show that the F-AUKF algorithm eventually achieves a positioning accuracy about 10 times higher than 

that of a single odometer, about 6 times higher than that of a single RTK and about 3 times higher than that of the traditional 

UKF algorithm, effectively improving the problem of dispersion of the filtering effect after a long period of operation and 

providing better stability. 
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1. Introduction 

High-precision positioning is one of the key technologies 

for mobile robots since position and orientation are the main 

demands of mobile robot navigation, guidance, and steering 

control. Dead reckoning of location and orientation by 

making use of kinematic model and shaft encoder as means 

of incremental measuring is commonly used in indoor 

applications of mobile robots. However, in outdoor 

environment, mobile robots must traverse in uneven and soft 

earth terrains, the localization error of dead reckoning will be 

rapidly accumulated due to the slipping movement and other 

flaws of wheels and result in a relatively low accuracy. The 

INS/GNSS (Initial Navigation System/Global Navigation 

Satellite System) multiple sensor fusing localization 

technology has been proven to be an effective method [1-5]. 

The short-term accuracy of INS combined with the long-term 

accuracy of GNSS compensate for the drawbacks of a single 

sensor. Although a large body of research has been published 

on multi-sensor fusion positioning problems, most of the 

research applies simulations to verify the effectiveness of the 

algorithms. In practical applications, more factors need to be 

taken into consideration. For example, to compensate the 

defects of a single sensor in order to improve localizing 

accuracy of the mobile robot so as to promote the accuracy of 

trajectory tracking. Furthermore, the robustness of the control 

method needs to be improved as factors such as the unknown 

environment and the uncertainty of disturbances can have an 

impact on the actual effectiveness of the control method. This 

paper focuses on situations where the RTK signal is weak 

due to complex industrial environments (e.g., building 

blockage) or weather factors (e.g., thick cloud cover). 
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Fu Jun et al [1] propose a new adaptive UKF algorithm to 

improve UWB indoor positioning accuracy by constructing a 

state error compensation function and correcting the state 

deviation in real-time. Hu Fengjun et al [6] propose a multi-

sensor fusion positioning correction algorithm based on EKF 

with adaptive error and refine the covariance using the 

evolutionary iteration mechanism of the genetic algorithm is 

verified by experimental simulation. Din Menatalla-Shehab-

El et al [7] apply the improved UKF in SOC power 

estimation and use adaptive covariance least squares to 

calculate the measurement noise covariance, which improves 

the accuracy of estimation. Juqiang Feng et al [8] introduce 

the forgetting factor into the unscented Kalman filtering, 

which eliminates the problem that the traditional UKF 

method is greatly affected by system noise and observation 

noise with high accuracy, great convergence and robustness 

in battery SOC estimation. This article improves the accuracy 

of localization and orientation of the mobile robot by 

adopting the integrated method of fusing RTK localization 

data, odometer data and inertial measurement unit data, and 

introduces the adaptive unscented Kalman filtering algorithm 

with forgetting factor in order to improve the robustness of 

the mobile robot tracking control system under the long-time 

operation. Finally, a mobile robot control experiment is 

designed on an omni-directional self-guided mobile robot 

with Mecanum wheels. The experiment validates the 

effectiveness and advantages of the algorithm in the control 

experiment. 

2. RTK- Real-Time Kinematic Difference 

Positioning Method 

The essential operational principle of RTK is based on 

the fact that the GNSS systematic error varies slowly and 

has time-spatial associations. Calculating the differences 

between two receivers can eliminate most of the errors to 

improve the positioning accuracy. As shown in Figure 1, 

the basic differential positioning system consists of three 

components: the reference station, the onboard RTK 

(mobile station) and the data exchange (mutual 

communication between the two stations). The correction 

data received from base station shall be positioning 

differences, pseudo range differences and carrier-wave 

phase differences [9]. This paper adopts the carrier-wave 

phase difference algorithm for the RTK. The kernel of the 

algorithm is to calculate the pseudo ranges of multiple 

satellites both between on board station and assistant base 

station by suppressing errors resulting from the influences 

of atmosphere disturbance, relativity error, clocking error 

and other causes to increase the accuracy. The pseudo-range 

is the biased distance between satellites and the stations, 

which is calculated by measuring the transmission time of 

the signals transmitted by every single satellite [10, 11]. 

 
Figure 1. Differential Positioning Basis. 

When GPS positions were first obtained, they were 

represented in the Earth-centered, Earth-fixed coordinate 

system (ECEF), that is the World Geodetic Coordinate 

System defined in 1984 (WGS 84). It is necessary to 

transform coordinates of ECEF into local frame. The problem 

arises that if any point used in the positioning has incorrect 

local coordinates (determined by conventional surveying 

methods in general) or incorrect WGS 84 coordinates owing 

to GPS flaws, the estimated transformation parameters will 

be incorrect and all the RTK measurements using the 

positioning will be influenced. 

Figure 2 illustrates a RTK system consists of an omni-

directional self-guided mobile robot platform mounted with 2 

RTK devices, an IMU device and a stationary RTK station in 

the open space outside the factory. The straight line connects 

the RTK devices passes through the geometrical center for 

the robot and is perpendicular to the x-axis of the robot. The 

IMU is installed at the geometrical center of the robot. Two 

RTK receivers are installed on the cart and their connection 

lines are perpendicular to the motion axis. The benefit of 

installing RTKs in perpendicular to the motion axis is that the 

yaw angle measured by dual RTKs is the one of the robot’s 
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motions without transform. 

 
Figure 2. A demonstration of two mobile RTK stations and a RTK base 

station. 

The yaw angle of the robot’s motion ����  is represented 

as: ���� = arctan2�
�2 − �1�, 
�2 − �1��           (1) 

Where (�2 − �1) and (�2 − �1) are obtained from the 

positions of the two antennas in the tangent plane of local the 

surface. See Figure 3. 

 
Figure 3. Determining the yaw angle using dual RTK. 

 
Figure 4. Diagram of the actual RTK installation. 

3. The Multi-sensor Fusion Filtering 

Algorithm 

3.1. Fusion Positioning Framework 

The algorithm applying the unscented Kalman Filter 

(UKF) to the fusion of the wheel odometer sensor, inertial 

measurement unit (IMU) sensor and Real-time Kinematic 

(RTK) sensor devices. The positioning information provided 

by the sensors are used in estimations of the location and yaw 

angle of the robot. In general, UKF consists of two parts: the 

prediction step and the update step. The prediction step uses 

positioning information from the wheel odometry 
����� , ������ . The update step uses IMU posture 

information ����  and positioning information provided by 

RTKs 
���� , ���� , �����as its observation. 

 
Figure 5. Block diagram of the fusion positioning process. 

The present researches on using the Kalman filter in the 

multi-sensor fusion navigation can be divided into two 

classes with the state of the estimation system: the methods 

of direct and indirect approximations. Both deploy the 

advantages of the fast regression fusing algorithm to 

administrate the lots of row sensor data in navigation 

devices. The indirect methods take the navigation errors of 

the subsystems INS and GNSS as the system state and 

calculate their optimal estimates. The direct method takes 

the output navigation parameters of the subsystem as the 

system state and deduces the navigation solution of the 

integrated system directly by Kalman filtering. Compared 

to the indirect method, the direct method has the following 

advantages: (I) system state equation directly describes the 

dynamic process of the resolving of the navigation 

parameters which reflects the real variations of the states in 

precision. It is more accurate than the first-order 

approximation provided by the indirect method. (II) The 

dynamic calibration equation of INS is the essential part of 

the system state equation, the Kalman filter not only obtains 

the navigation solution of the dynamic calibration equation 

but also plays a critical role in filter estimation, avoiding a 

great number of repeated calculations. However, applying 

the direct method to INS/GNSS integrated navigation 

introduces nonlinearities into the system equation, 

traditional linear Kalman Filter (KF) is not suitable to 

handle the nonlinearities involved. The Extended Kalman 
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Filter (EKF) is a common algorithm used for nonlinear 

system state estimation. It is an approximation method 

where the nonlinear system is linearized by Taylor series so 

that the linear KF can be applied. The Unscented Karlman 

Filter (UKF) is considered an improvement of EKF, they 

both share the same basis, the main differences are the 

representation of the Gauss random variable in the 

equations. The UKF uses a finite number of Sigma points as 

information about the system's state change and estimation 

capability to obtain another changing state focus. Then the 

mean and covariance of the changed focus are used to 

obtain the state estimate and the state estimate error 

covariance, which avoids the complex evaluation of 

Jacobian matrix and makes the algorithm easier to 

implement [12-15]. 

Suppose the working environment for the omnidirectional 

mobile robot is an ideal horizontal two-dimensional 

environment. Establish the coordinate frame in the plane 

where the omnidirectional mobile trolley is located, with east 

as the x-axis positive direction and north as the y-axis 

positive direction. The coordinates of the robot’s position and 

speeds in this frame are the state vector. Given the process 

and measurement noises have Gaussian distribution of 0 

mean, The discrete system state equation can be described as 

follow: 

��� =  �!"��!" +$�%� = &��� + '�$�~	
0, +��	'� 	~	
0, ,��                      (2) 

��  is the discrete state equation at time - , %�  is the 

measurement equation,  �!" is the state transfer matrix, &� is 

the measurement transfer matrix. $� 	and '�  are the process 

and measurement noises of 0 mean. +� 	and ,� are covariant 

matrix of $� and '� respectively. 

The UKF can be divided into 4 steps: initialization, 

unscented transform (UT), time updating and measurement 

updating. 

(1) Initialization. 

.�/0 = 12�0340 = 12
�0 − �/0�
�0 − �/0��3                (3) 

where �/0  is the initialized state estimation vector and 40  is 

the initialized error covariance matrix. 

(2) UT transfer. In this step, some samples are selected out 

of the original samples set under certain selecting rule 

so the sub-set selected samples shall have the same 

mean and variance as the original set. Then the selected 

samples shall be applied into the nonlinear system 

functions and corresponding range of the nonlinear 

functions shall be available to calculate the mean and 

variance transferred. 

1) computing 2n+1 Sigma point (sample), n stands for 

the number of dimensions of the state space, In the 

system under scrutiny, it shall be, 

56
78�!"0 = �/�!", 9 = 0	8�!": = �/�!" + �;
< + =�4�!"	�: , 9 = 1,2,∙	∙	∙, <8�!": = �/�!" + �;
< + =�4�!"	�: , 9 = < + 1,∙	∙	∙ ,2< (4) 

In the formula �;4�!"�: represents the the i-th row of the 

matrix’s square root; =  is the ratio factor, such that = =?@
< + -� − <  in it, ?  is an adjustment parameter that 

determines the distribution of Sigma points around �/�!" , 

which is usually set to a small positive value. And ? is taken 

to be 0.0001 in this paper. 

2) determining the weight of the Sigma points. 

5A6
A7BC0 = DEFDBG0 = DEFD + 1 − 	? + HBC: = BG: = D@
EFD� , 9 = 1,2,∙	∙	∙ ,2<             (5) 

where B of subscript	I	is the mean and with subscript J is the 

covariance, and superscript is the index of Sigma points. H	is 

the state distribution parameter whose value can adjust the 

accuracy of the variance. And H is taken as 2 in this paper. 

(3) Time update. The Sigma point set K�!":  is used as the 

state vector of UKF. The system state equation is used 

to find the next predicted state value 8�|�!":  of the 

system. The predicted mean �/�|�!"	  and variance 4�|�!"	  

are calculated. 

5A6
A78�|�!": =  ∗ 8�!": +$: , 9 = 0,1,2,∙	∙	∙ ,2<�/�|�!"	 = ∑ BC:@E:O0 8�|�!":4�|�!"	 = ∑ BC:@E:O0 
8�|�!": − �/�|�!"	 �
8�|�!":−�/�|�!"	 �� + +�

       (6) 

(4) Measurement update. Applying estimated states 8�|�!":  

to the measurement equation. Estimated observation 

values %�|�!":  are computed, by computed the weighed 

summary to obtain the estimated system means %P�|�!" 

and covariance 4QRQR. 

5A6
A7%�|�!": = &�8�|�!": + ': , 9 = 0,1,∙	∙	∙ ,2<%P�|�!" = ∑ BC: %�|�!":@E:O0	4QRQR = ∑ BG:@E:O0 
%�|�!": − %P�|�!"�
%�|�!":−%P�|�!"�� + ,�

       (7) 

Computing 4SRQR  of the state prediction and observation 

estimation. 

4SRQR = ∑ BG: T�8�|�!": − �/�|�!"	 ��%�|�!": − %P�|�!"��U@E:O0  (8) 

Computing the gain of Kalman filter V�F". V�F" = 4SRQR ∗ 4QRQR!"                            (9) 

Finally, computing the state update �/�  and covariance 

update 4� of the system. 
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�/� = �/�|�!"	 # V�F"
%� � %P�|�!"�               (10) 

4� � 4�|�!" � V�F"4SRQR�                      (11) 

3.2. The Improvement of Self-adaptive UFK Algorithm by 

Adding Forgetting Factor (F-AUKF) 

The UKF is obviously advantageous over traditional KF 

and EKF. However, the process noise covariance matrix of 

the errors and the signal measurement noise covariance 

matrix can cause the filtering effect to diverge after a longer 

period of filtering. Meanwhile, the accuracy of the UKF 

algorithm is influenced by the initial value of the process 

significantly. If the initial state equation and variance errors 

are relatively large, it will affect the state mean and the 

estimated value. This paper proposes the F-AUKF algorithm, 

the variance inflation principle is used to reduce the influence 

of the initial state error on the filtering process. In other 

words, the system noise covariance is self-adaptively inflated 

with the measurement noise covariance matrix to adjust their 

effects in the filtering process. 

Forgetting factor W is introduce in this paper so as to avoid 

the divergence and to improve the accuracy of the algorithm. 

Updating the covariance of system noise +/�  and the 

measurement noise covariance ,/�: 

5A
6
A7
+/� � 
1 � X�!"�+/�!" #X�!"
V�F"Y�Y��V�F"� # 4� � 4�|�!"	 �
,/� � 
1 � X�!"�,/�!" # X�!"
Y�Y�� � 4QRQR�Y� � %� � %P�|�!"X� � 
1 � W�
1 � W�F"�!", W ∈ 20,13

     (12) 

Where Y� is the residual, X� 	is the self-adaptive factor and W is the forgetting factor. 

The forgetting factor W  has a value between 0.95 and 1 

generally, it is 0.98 in this paper. In order to improve the 

robustness of the system, a self-adaptive factor X� is used in 

this paper to prevent the filtering effect of UKF from being 

too sensitive to the value of the forgetting factor b. 

4. The Experimental Analysis 

In order to verify the accuracy improving effectiveness of 

the F-AUKF algorithm compared to the traditional UKF, the 

experiments are carried out in open and almost flat outdoor 

field with the robot (the altitude can be omitted). The RTK 

and odometer share the same coordinate system in order to 

facilitate the comparison. Figure 5 shows the actual 

experimental field. 

 
Figure 6. QT-based development of the upper computer. 

The vehicle movement (CM for circular motion mode, LM 

for linear motion mode) can be controlled using the self-

developed QT upper computer. The green dashed line is the 

theoretical trajectory and the blue solid line is the actual 

trajectory, which can reflect the real-time latitude, longitude 

and real-time coordinates of the vehicle. 

 
Figure 7. QT-based development of the upper computer. 
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Two groups of experiment are deployed. In Group a, the 

omnidirectional mobile robot started from the origin of the 

navigation space and moved in a circle with a radius of 8 m 

at a speed of 4 cm/sec. The trajectories of the different 

sensors and algorithms were recorded in turn. Figure 8 shows 

the localization trajectory data for different sensors and 

algorithms in the experiment of Group a. Figure 9 shows the 

local details of the positioning trajectories of the various 

algorithms and sensors in the experiment of Group a (at the 

start of the movement). 

 
Figure 8. Comparison of conventional UKF and F-AUKF (Group a). 

 
Figure 9. Comparison of conventional UKF and F-AUKF (Enlarged view of 

Group a). 

In Group b, the robot moves on a circle with a radius of 

5m at a speed of 6cm/sec. The data are recorded in same 

manner as for the experiments in Group a. Figure 10 

illustrates the localization trajectory data for different sensors 

and algorithms in the experiment of Group b. Figure 11 

shows the local details of the localization trajectories of the 

various algorithms and sensors in the experiment of Group a 

(moving for a period of time). 

 
Figure 10. Comparison of conventional UKF and F-AUKF (Group b). 

 
Figure 11. Comparison of conventional UKF and F-AUKF (Enlarged view 

of Group b). 

All experiments show that the odometer data drift obviously 

from the reference trajectory due to the accumulated errors; the 

RTK trajectory curve fluctuates significantly around the 

reference trajectory, indicating that the RTK positioning is 

affected by the complex industrial environment and there is 

significant noise, but there is no cumulative error and the 

trajectory does not drift; the traditional UKF data are closer to 

the real trajectory than that of the odometer and RTK, that 
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sensor-fusion presents higher positioning accuracy. However, 

the filtering effect in the second half of the trajectory in Figure 

9 obviously has some divergence, and the divergence effect in 

the whole part of Figure 11 is more obvious, which indicates 

that the positioning accuracy is not sustainable. The 

positioning trajectory filtered by the F-AUKF algorithm is 

closer to the reference trajectory than the positioning trajectory 

obtained by other positioning methods. In addition, the 

stability after a period of time is also significantly better than 

that of the traditional UKF algorithm. 

To reveal the accuracy of the different positioning methods 

intuitively, the standard deviation formula is used to calculate 

the accuracy of several positioning methods: 

[ � \"
E∑ 
�: � �0�@E:O0  or [ � \"

E∑ 
�: � �0�@E:O0     (13) 

where [ represents the positioning accuracy in meter. �: and �:  are the coordinates of �-direction or �-direction measured 

under different positioning methods. �0  and �0  are the 

coordinates of the x-direction or y-direction of the reference 

trajectory at the same moment, respectively. 

The accuracy of different positioning methods is shown in 

Table 1: 

Table 1. Comparison of standard deviations of different positioning methods. 

unit: m. 

Group 
Accuracy ]	of different 

positioning methods 
x-direction y-direction 

Group a 

Odometry 1.2189 1.0878 

RTK 0.5928 0.4935 

Traditional UKF 0.2858 0.2026 

F-AUKF 0.0955 0.0356 

Group b 

Odometry 0.8095 0.6742 

RTK 0.5757 0.6259 

Traditional UKF 0.2624 0.3325 

F-AUKF 0.1316 0.1062 

5. Conclusion 

A mobile robot positioning algorithm is proposed in this 

paper. The algorithm applies sensor fusion and modified 

adaptive UKF with a forgetting factor. Experiments are design 

in several groups to validate the applicability of the algorithm. 

The experimental results show that the F-AUKF algorithm 

finally obtains a positioning accuracy that is about ten times 

better than the single odometer positioning accuracy, about six 

times better than the single RTK positioning accuracy and 

about three times better than the traditional UKF algorithm in a 

complex industrial environment, effectively improves the 

problem of filtering effect scattering after a long period of 

operation, and has better stability. 
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