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Abstract: A suitable decision plan is followed by an effective financial management to achieve optimality while investing in 

a competing stock portfolio. This study altered a Dynamic Programming (DP) model of Bellman. The modified model was 

used to solve a business problem. The problems of choosing a stock portfolio for optimal return among investors in financial 

markets have resulted in a financial crisis. Most financial analysts provide investors with incorrect and unvalidated investment 

information. The consequences were minimal optimum, no return, and an investment problem. The goals are to ensure 

optimality in investor returns, validate the results using two validity tests, and select the test that best validated the model. The 

silhouette and Dunn tests were used to validate the outcome result. The results of using Silhouette reduced computational 

complexity and produced a more robust and validated return. The k-means clustering (an aspect of unsupervised machine 

learning) provided better statistical evaluation and information on the investment pattern. In comparison to previous work, the 

introduction of variables allowed for the best return at stage one. Finally, a validated investment report can help to avoid 

mistakes made by market analysts and investors when making investment decisions. 

Keywords: Dynamic Programing, Stocks Portfolio, Reverse Algorithm, K-means Clustering, Dencision Making 

 

1. Introduction 

Revenue management in a financial stock portfolio has 

thrown the global economy for a loop. It has resulted in the 

collapse of many global stock markets as a result of a lack of 

information on where to invest and make the best return. The 

term "dynamic programming" is synonymous with 

optimization. The term can be used interchangeably with 

"planning" or "tabular method." As a result, the term 

"dynamic programming," abbreviated DP, derives from the 

term "mathematical programming," and it is defined as the 

mathematical optimization of variables in mathematics (or 

optimization of mathematical expressions) [1]. Dynamic 

programming, or DP, is the process of following an optimal 

decision rule when making a choice during a fund investment 

to achieve the best possible outcome, as the procedure entails. 

According to a reviewed study in revenue management, 

there is a need to first state the choice-based network revenue 

management problem by formulating the underlying dynamic 

program and structuring a review based on its composition, 

components, or variables [2]. According to the literature, 

model modification is required to suit a specific (chosen) 

method. It is important to note that DP, like topological data 

analysis, can be combined with other methods on input 

datasets; the combined aspect of DP was used in decision-

making, integrated Bellman's equation, and applied in 

estimating missing data [3]. The results of their study 

revealed that the DP had a significant advantage over the 

dataset's base model, and they recommended that future 

research be conducted to measure or test the significant 

differences in the parameters because there are closenesses or 

similarities in the state variables. 

This study specifies the limit of the calculation and 

determines the number of times to run the model. The k-

means clustering aspect of the evaluation test was discussed. 
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Code functions in the R programming language were used; 

the algorithm presented followed the step-by-step 

computation to minimize complexity. The topological data 

analysis helped to integrate the k-clustering algorithm, which 

explains what was done in the computation, and finally 

removed the outliers and displayed compactness in the 

resultant patterns. 

The main goal of revenue management in passenger air 

transport was stated to be the duty of optimally selling a 

constant and perishable inventory in a specified time period; 

the company should have named or defined their products in 

relation to their services; the idea was to pilot the availability 

of the products (tickets) over the set time to produce the 

maximum profits (revenues) [4]. There are numerous revenue 

management systems, but their research concentrated on 

passenger air transportation, covering the state-of-the-art, key 

contributions, and challenges. According to their research, 

incremental sales in the airline industry would allow airlines 

to directly respond to their customers (including travel 

agents). Onboard shopping priority, group booking, home 

delivery, seat reservation, and other options are also 

suggested. They concluded that combining revenue 

management approaches with other sectors would create a 

favorable environment for future research. 

Dynamic programming, or DP, was used in decision-

making to design an effective way of distributing the limited 

fund (resources) among the group of projects to reduce the 

overall losses in project investment [5]. The DP has a lot 

more applications that are yet to be explored. Natural settings, 

it was stated, contribute to the importance of investment 

security with adequate networks, consistency of returns, 

management competency, a stable environment, and legal 

and regulatory controls [4]. 

The tabular method introduced in this study would produce 

a robust result and detailed procedures for solving the 

financial problem stage by stage while observing the 

recursive procedures; the network flow was also identified. 

According to Hamdy, DP can find the best solution to an n-

variable problem by decomposing it into n stages of single 

variable sub-problems [6]. Hamdy shows in his work that the 

stage varies depending on the optimization problem. 

Dynamic programming does not provide computational 

details for optimizing each stage as the tabular method does. 

Markowitz in 1952 [7] developed a theory on portfolio 

selection and fund allocation strategy, particularly among 

various stocks, so that investors can get the most out of their 

portfolios; making the most profit is the primary goal of 

financial management, planning, and investment. 

A study in dynamic programming used Bellman Richard's 

general DP model to solve a company's existing financial 

problems, but there was no flow route in their recursive stage, 

so the method was compounded and difficult to understand 

[8]. In contrast to the tabular method, where the paths of flow 

are distinct, the outcome benefit at each investment stage was 

unknown in Bellman's modeling procedure. Furthermore, 

their study did not show optimality at any stage, and detailed 

procedures of optimization of the dynamic programming 

problem are necessary for investors to have an idea of their 

profit or return at each stage of flow. This study incorporated 

both the optimality principle, which uses a recursive 

procedure to solve a company's financial problems and 

revealed the extent of validity of the result; the expected 

returns at each stage of implementation were shown so that 

the investor can see how their investment grows at each stage. 

Another article presented the findings of a case study of 

the decision-making processes of investment managers in 

developing economies, and the article stated that natural 

settings contribute to the importance of investment security 

[9]. Furthermore, adequate networks, consistent returns, 

management competency, a stable environment, and legal 

and regulatory controls are key investment decision-making 

concepts. There was no validation or significant test to 

measure differences between the dependent variables. 

Modern Portfolio Theory (MPT) provides a solution for 

allocating funds rationally among various stocks. 

Markowitz's research identified the key to achieving the best 

returns with the least amount of risk in portfolios with 

varying asset risk. The MPT has been used to select a 

portfolio-asset with the lowest risk of investing; the theory is 

critical during the selection process; however, it does not 

provide the expected outcome from a specific stock. This 

selection assists investors in minimizing risk during portfolio 

selection or decision making; the study explained the 

procedures in MPT [10]. This study revealed MPT theories in 

assigning weight to the portfolio as a tool for investment 

decision making; covariances between assets with the lowest 

variance were also explained. 

Haugh and Kogan [11] focused on American option 

pricing and portfolio optimization problems when the 

underlying state space is high-dimensional. Consult these 

works [12-20] for more information on dynamic 

programming and validity testing. This study clearly 

describes the procedure of Markowitz's Portfolio Theory in 

stock selection; apply a tabular method in solving the stock 

allocation portfolio problem in DP, and detect shape and 

existing cluster in the investment. The use of a tabular 

method in revenue management is uncommon, and 

evaluation of the results is rarely performed. This research 

topic was inspired by two factors. Investors have been misled 

when attempting to choose where to invest their resources 

among various stocks. When it comes to allocating resources 

for projects, government agencies struggle. The procedure of 

the method proposed in this study is simplified, concise, and 

follows the recursive processes of the principle of optimality. 

Bellman's dynamic programming model was modified to fit 

our approach. 

Two variables were introduced into the DP model. system 

control and state control variables. The first (state control 

variable) was used to check the boundary limit, and the 

second (system control variable) helped to produce an 

optimal return at stage one. There was no optimal value at 

stage one in the previous work by The choice of portfolio 

selection for optimal return among investors in the financial 

markets has resulted in a financial crisis. Financial analysts 



 Mathematics and Computer Science 2022; 7(6): 130-143 132 
 

aggravate the problem when they feed investors wrong and 

unvalidated information on investments. The effect mostly 

led to minimal or no optimal return, and sometimes to 

investment bankruptcy. The study’s aims are to ensure global 

optimality in investors’ returns and validate the results of the 

outcome using two validity tests. This study compared and 

chose the test that best fit the modified model. The Silhouette 

results reduced computational complexity and produced a 

more robust and validated return. The k-means clustering (an 

aspect of unsupervised machine learning) provided better 

statistical evaluation and information on the investment 

pattern. 

The tabular approach was not considered in the majority of 

the literature. The advantage of this approach is that the 

procedures follow a simple, descriptive format that can be 

easily understood when explained to investors. The validity 

test authenticated the results, which most analysts failed to 

implement into their model. The most important advantage of 

this study is that errors made by market analysts and 

investors in their investment choices can be avoided by 

checking the validity of their outcome or model. 

2. Material and Methodology 

The methodology used in this study is known as the 

tabular method. The method was applied to the solution of an 

investment problem in which a company or investor 

purchases four stocks. The problem depicts the relationship 

between each stock's return and investment. The investment 

is measured in units, and the total amount invested by the 

company is $6000. Modern portfolio theory explained the 

fundamental principles of choosing among competiting 

stocks. In its computation, the solution follows the iterative 

and recursive procedures of the dynamic programming 

principle. In this study, the introduced variable(s) assisted in 

achieving a global optimal investment return; the Bellman's 

model was further modified to suit the technique and to allow 

an optimal return at stage one, as explained in the following 

model: 

1 1 1( ) max{ ( ) ( )} ,k k k k k k k kf S g U f S x x+ + += + + +
10 , 10,k kx x +≤ ≤ 0   U ,  = , -1,? ,1, k kS k n n≤ ≤  and .n k≥  

where �	is the total investment, �	is the Item number of the 

portfolio, ��	is the Decision variable, investment assigned to 

item �), ( )k kg U is the Stage objective function, return of 

��, ��	is the State variables (i.e., investment of item k to item 

n , ����	=	�� 	-	��	 is the state transition equation, 

	
��(�
��)	=	 Maximize return of �� , X���  is the control 

variable introduced and which tentatively lie between 0 to 10. 

The range is arbitrarily chosen for this study, and the study is 

limited to stage four. If we let X���= 0 and 	
��(�
��)	=	0, 

we can recover the original model. The development of this 

modified DPP model is presented as follows. 

Given �� to be a vector containing a variable to be selected 

at stage j, where j represents the various stages; n is the last 

stage. The general Dynamic Programming model can be 

stated as: 

1

j j
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j j j
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The methodology for its computation that yields optimal 

solutions, and indeed all alternative optimal solutions, is 

unique. In the model, ��, and � are assumed to be integers in 

(1). The only restriction limits the selection of physical 

dimensions used in measuring ��	and �. The procedure could 

start from the first nth stage (number) to the last nth number 

and vice vasa in the maximization of z, provided that the 

method makes it possible to examine every set of feasible �� 

while the recursive principle is observed. This study started 

from the backward process (i.e., from where � = 4	to � = 1 

or see stages 1 and 4 in section 4.2.1). 

Denote z* the absolute maximum of equation 1; this is 

defined in (2) as follows 

1 ,...,
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n

n

j j
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j
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=

= ∑                     (2) 

where the maximization carried out for non-negative integers, 

�� must satisfy (3) 

1

.

n

j j

j

a x b

=

≤∑                             (3) 

We proceed by selecting a value of �� , holding �
  fixed, 

and maximizing z over the remaining variables, ��, . . . , �
��. 

The values of ��, . . . , �
��	which maximize �	under these 

conditions will depend on the value of �� selected. If we do 

this for every allowable value of �
 , then � ∗  will be the 

largest � value obtained, and we thus find a set of �� which 

maximize � . Firstly, ��  is selected and the expression is 

computed as shown (4). 
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(�
)  is independent of ��, . . . , �
�� , and the 

maximization is taken over non-negative integers 

��, . . . , �
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for non-negative integers that satisfies (2.4) depends on �
 or 

more specifically on � − �
�
 . 
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Therefore, 

( )
1 1

1

1 1
,...,

1

( ) ,max
n

n

n n n j j k k
x x

j

W b a x f x x x
−

−

− +
=
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Computing �
��(� − �
�
) for every allowable value of 

�
, (5) transforms to (6) as 

1 1* ( ) ( ) .max
n

n n n n n k k
x

Z f x W b a x x x− += + − + +      (6) 

The variable, �
  can take on the values 0,1, . . . , ��/�
 , 

where ��/�
  is the largest integer. An investment, �
  is 

assigned to the item n, and it is to be chosen based on the 

minimum value of the correlation of the item n. �
��(� −
�
�
)  is a function to be maximized over the variables 

��, . . . , �
�� . The development of this model where the 

system control variable was not introduced can also be found 

in our previous study [21]. Ideally, the process utilizes the 

recursive relationship and solve from 	
(!
) of the first stage 

to the final 	�(!�) which is the maximum return on the issue, 

while portfolio allocation scheme is also optimal as reviewed 

in Ohanuba, F. O et al., and Hadley, G. [21, 22]. 

2.1. Markowitz Theory 

Prof. Harry Markowitz, an economist, developed the 

theory in the 1950s with the goal of assisting investors in 

calculating risk based on their desired return. According to 

Modern Portfolio Theory (MPT), stocks with high 

correlations should be avoided. However, between the 1930s 

and 1950s, some scientists (Allais, De Finetti, Hicks, 

Marschak, and others) discussed elements of portfolio 

problems, but Harry Markowitz was the first to propose the 

theory of portfolio selection for risk aversion: von Neumann-

work Morgenstern's on expected utility results provided 

evidence of economic justification for the model [23-25]. 

In this study, MPT was first applied in choosing the suitable 

stocks (those with the lowest correlation values) to invest in. 

The model in portfolio selection can be stated using the works 

of these authors; Tobin, Sharpe, and Board [26-29] as. 

2.2. Minimize "#$% 

Subject to Χ#h = h(                              (7) 

Χ#e − 1 

where X'VX is portfolio variance; the variable, X is the 

column of investment proportions in the risky assets, V is the 

positive semi-definite variance-covariance matrix of asset 

returns, hp investor’s target of return, h is the expected 

column vector asset returns, and e is the unit column vector. 

The constraint to model restrictions of short investment is 

0Χ ≥                                        (8) 

where 0 = column vector. The qaudratic equation in 

nonlinear mathematical programming is related to (8). 

Similar idea of augumentation was adopted in case 2 of the 

tabular method’s solution in this work when we assumed a 

control variable to be a particular value. Some study focused 

on the attributes in an item purchased (invested on) rather 

than the item itself according to Board, J. L et al.  [29]. 

3. Solution for Selecting Portfolio Model 

In the absent of a short investment, the solution can be 

rewritten as 

L = �
+ Χ#VΧ − λ�(Χ#h − h() − λ+(Χ#e − 1).     (9) 

From (9), we define the first order conditions. 

VX = λ�h + λ+e. 
This showed a straight-line relation between the target 

returns, h and their covariances, VX. 

Make X the subject of the formular, to obtain 

X = λ�V��h + λ+V��e = V���he A��,          (10) 

where 
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1 1

1 1
p p 1 1

h V ?h V
h 1? h 1?

h V e V

h e
A V h e V h e

e e

− −
− −

− −

 ′ ′′ ′   = = =      ′ ′  
. 

Substite (10) into the portfolio variance (Χ#VX), gives 

[ ] 1
p1 h 1?p p

V h A− ′ =                        (11) 

Then, portfolio standard deviation, Sp (i.e., �0 = 120) is 

[ ]

12 2

1
2

1
p1 h 1?

1

p p

p p

p

h h

A A

S h A

h
AA

−

 
 
  ′ = =       
 



.      (12) 

Next is the implementation of the tabular method, and finally 

the validity test of the analysis. The tabular procedure obeys the 

optimality rule while maintaining a recursive procedure [8]. 

Modern Portfolio Theory (MPT) emphasizes utilizing the 

best returns with the least amount of risk on portfolios with 

varying asset risks, but this is dependent on how one divides 

up his investment pile. The procedures for carrying out the 

MPT are as follows: 

1) Data collection. 
2) Creation of the Markowitz efficient frontier (i.e., 

2
p p=σ σ ). 

3) Creation of market portfolio and market line. 

4) Creation of the optimal portfolio; this is the plot that 

represents steps 1 to 3, that represents point of tangent 

between the Markowitw efficient frontier and the 

capital market [30]. The whole technique for this study 

integrated the validity analysis to ensure completeness 
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of the process and validity of the outcome. For more 

reading on portfolio selection of Markowitz, see Board, 

J. L et al.; Markowitz, H.; Zhang, Y et al.; Ismail, A. 

and Pham H.; Dai, Z. and Kang J. [29-33]. 

Analytically, if there are N number of securities; Let rit be 

the anticipated return at time, t per dollar invested in security 

i. Let dit be the rate at which the return on the 345 security is 

selected at time t be discounted back to he present; Let	X6 be 

the relative amount invested in security, 3 . Then the 

discounted anticipated return of the portfolio is 

1 1

N

it it

i i

R d r X

∞

= =

=∑∑
1 1

( )

N

i it it

i i

X d r

∞

= =

=∑ ∑              (13) 

1 1

N

i it it

i i

R d r

∞

= =

=∑∑ , is then the discounted return asset of the 

345 security. 

i iR X R=∑ , where iR is independent of iX . 

Since 78 ≥ 0  for all i and ∑78 = 1 , R  is a weighted 

average of ;8  with the 78  as non-negative weights and to 

maximize ;, we let 78 = 1	for 3 with maximum ;8. If several 

;<= , � = 1,2, . . . , �  are maximum, then all allocations with 

∑ �? = 1�<@�  maximize  [7]. 

Theorem on Modern Portfolio of Return states that: 

The portfolio of the return is the proportion of the 

combined weights of the aggregated assets' values. 

i iR X R=∑ , 
2

( ) ( )p ii
i

E R E Rw=∑ = the expected return, (14) 

where ;0 is the return obtained the portfolio, ;8 is the return 

on asset i and,	A8  is the weighting of the component asset "i" 

in the portfolio. 

The Portfolio volatility is a function of the correlations, ρij 

of the component assets, for asset pairs (i, j). 

Portfolio return variance: 

2 2 2
p i i i j i j ij

i i j i

w w w ρσ σ σ σ
≠

= +∑ ∑∑ , 1ijρ =  for i j=  (15) 

where ijρ  is the correlation coefficient between the returns 

on assets i and j. 

Taking the square root of (15), Portfolio return volatility 

(statistically called standard deviation) is obtained in (16) 

2
p pσ σ=                                  (16) 

The diagram below depicts the Modern Portfolio 

Theory in action. Typically, the target return is plotted 

versus the portfolio standard deviation. When the curve 

aligns with the capital market line, as shown in Figure 1, 

the market indicates an open risk in which any investor 

can participate. 

 

Figure 1. Modern Portfolio Theory. 

If there is no risk-free asset, the efficient frontier of MPT is formed at the hyperbola; if there is a risk-free asset, the efficient 

frontier is formed at the straight line as revealed in Yao, D et al. [8], and shown in Figure 2. 
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Figure 2. Efficient Frontier for risk free assets. 

For a two-asset, Portfolio return is obtained from (14) as 

( ) ( ) ( )a bp a bE R E R E Rw w= + ( ) (1 ) ( ),a aa bE R E Rw w= + −                                                (17) 

and the Portfolio variance is 

2 2 2 2 2 2p a a a b a bb b abw w w w ρσ σ σ σ σ= + +  

From (17) a three-asset Portfolio return is derivered as given in (18) 

( ) ( ) ( ) ( ),m a a b b c cE R w E R w E R w E R= + +                                                                (18) 

and the Portfolio variance is derived from (14) as 

2 2 2 2 2 2 2 2 2 2p a a c c a b a b a c a c b c b cb b ab ac bcw w w w w w w w wρ ρ ρσ σ σ σ σ σ σ σ σ σ= + + + + +                            (19) 

For assets greater than three, the same derivation pattern is 

applied. 

3.1. Metric Distance for Validity Tests 

The statistical method of validating the research of this 

kind starts with data cleaning for missing values. 

Interpolation was used for data cleaning before proceeding to 

other analysis. The interpolation function, 	B  in this study 

was obtained from Excel function given as 

	B = 	C2 . $E+�$F+

��                     (20) 

where C2 = the value of the cell before the empty cell(s), 

depending on the position of the cell in excel spreadsheet, G2 

= the value of the cell after the empty cell(s) (i.e., cells of the 

missing value), 

� = the number of the empty cell(s) between (C2 and G2), 

�� . 1� = the gap between (C2 and G2), and $ is used for 

fixing those empty columns once (where �	 9 2) by clicking 

and dragging from the edge of the first cell (of the missing 

value) where the function was first applied. 

3.2. The Classical Metric Distance for Calculating Cluster 

Validity Index 

The Euclidean distance or the Manhattan distance is an 

efficient distance measure used in calculating Silhouette 

index and Dunn index. The distance (space) calculation is 

referred to as a metric if it satisfies three properties: (i) 

symmetry, (ii) triangle inequality, (iii) positive value. 

Let i and j be two points consisting of �’8  and �’�  p-

variables, then, the Euclidean distance between i and j points 

(dI	�8 , ��J) can be calculated as 

Euclidean: �8 � I�8�, �8+, . . . , �80J	  and 

K� � ����, ��+, . . . , ��0�  
LI�8 , ��J � MI�8� � ���J+ . I�8+ � ��+J+ .⋯.

I�80 � ��0J+O
P
Q
  

LI�8 , K�J � R∑ ∑ S�8� � ���S+
�@�
8@� T
P
Q 	∀	�8 , �� ∈ �  

� W∑ I�8� � ���J+0
�@� 	                      (21) 

Let �8 	and	K� 	be two points consisting of �’8  and K’�  n-

variables, SI�8 � K�JS  is the absolute value of distance 

between �8 	and K8 . Then, the Manhattan distance between i 

and j points (dI	�8 , K�J) can be calculated as 

LI�8 , K�J � I�8� � ���J+ . I�8+ � ��+J+ .⋯. I�8[ � ��[J+ 
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� ∑ |��8� � K8��|	[�@�                    (22) 

The variables ] � 6 (i.e., the total number of portfolios for 

the investment, �8 and K8 are the values of the 345 variable, at 

points x and y, respectively. 

Some of the important factors affecting specific validation 

approaches are based on two dimensions of datasets [34, 35]. 

Let �8 	and	K� 	 be two points consisting of _’8  and _’�  n-

variables, then, the Dunn distance between i and j points 

(dI	c8 , _�J) can be calculated as 

ab �
c6dPefgheijIkf,khJ

clmPefei j�kn�                         (23) 

where LI_8 , _�J  = inter-cluster distance metric between 

_8 	and	_� clusters, 

L�_o�  = mean distance between all the pairs. The 

illustration for the cluster is shown in Figure 3. The figure 

represents three different cluster groups in a dataset. Intra-

cluster distance metric is obtained within each group, but the 

mean distances are obtained between all the pairs. 

 

Figure 3. N Data Points divided into 3 Clusters. 

Let X=px�, . . . , xdr	be a set of n object from space s, d be a 

dis-similarity or distance over s . This study deal with 

clustering that are partitions; it can equivalently be expressed 

by labels l(1),…, l(n) ∈ t� � 1,… , � where v�3� � w ⇔ �8 ∈yz , 3 ∈ 	t
 , and	cluster	sizes	are	 denoted by �z �∑ 1�v�3� � w�
6@� , w ∈ t�.  The approach for the test will 

allows the data to be systematically classify homogenious 

elements into different groups after preprocessing the 

datasets; it is not manually or randomly [36]. The Silhouette 

index (width) for an observation �8 	 ∈ 7	is 

�y, L� � ��8��<�8�
�<B	<�8�,��8�,                         (24) 

where 

��3� � �

n�f�―�∑ LI�8 , ��Jo�8�@o���

8��	
��L	��3� �

�3�
w � v�3�

�

�∑ LI�8 , ��Jo���@z   

��3�	 = average distance between 3  & �  all other 

observations in the same cluster C. 

��3�	 = average distance between 3  & �  all other 

observations in the nearest. Each validity test has its 

benchmark for measurement. The Silhouette’s range is 

between (−1 to +1), the Dunn index, lies between (0 to ∞). 

The index of Dunn should be maximized (large), which 

implies that low values are not considered. 

3.2.1. Cluster Validity Indices 

Cluster analysis is the process of dividing or grouping a 

set of observations (objects or datasets) into subsets. Each 

set represents a cluster, with groups within one cluster 

similar to one another and groups within other clusters 

distinct. According to Garcia-Dias et al. in 2020 [37], 

clustering analysis is a type of unsupervised learning that 

seeks to determine the most natural way of categorizing a 

dataset. Garcia-Dias et alwork.'s in 2020 also 

demonstrated that the k-prototype algorithms could join 

two algorithms using a combined dissimilarity measure (k-

means and k-modes). Clustering is the process of 

categorizing a set of data objects into multiple groups or 

clusters so that objects within a cluster are highly similar 

but very dissimilar to objects in other clusters. Clustering 

is a data mining tool that is used in a variety of fields such 

as biology, engineering, mathematics, medicine, data 

mining, and so on. Density-based, partitioning, 

hierarchical, and k-means (a coefficient-based technique) 

are some clustering methods [38]. The validity measures 

are generally internal, stable, and biological, according to 

Brock et al. in 2008 [39]. 

3.2.2. Steps in Computating Validity Indices 

The metric distance is then computed. The following are 

the five steps involved in the computation: 1. Importation of 
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Libraries 2. Data importation 3. Cluster centroids 

computation 4. Algorithm validation 5. Recalculation. Figure 

4 illustrates the five steps. The relevant libraries for the 

computation were imported in the first step, which involved 

the use of code functions. The result of our dataset is then 

imported into Python programming language software; the 

second step is completed. In step 3, the data points were 

computed, and the algorithm was tested to ensure that the 

process was followed correctly. Finally, the cluster is 

recomputed until the optimum values in clusters are obtained. 

At k = 2, the optimum values also indicated the maximum 

values among the clusters (k = 1, 2, 3,4,5,6,7,8,9,10). 

 

Figure 4. The 5-Step procedure in the Validity Test computation. 

Intra-cluster validity test was adopted to evaluate the 

efficiency of our analysis. Silhouette widths were considered. 

The Euclidean distance is an efficient distance measure used 

in calculating Silhouette index in intra-cluster validity test. 

4. Application to Financial Problem and 

Results 

4.1. Return and Investment Problem 

A company invested $60,000 in four stocks in the hopes of 

confirming the optimal portfolio through rational fund 

allocation to maximize investment return. The relationship 

between the return (unit: $10,000 per unit) and the 

investment (unit: $10,000 per unit) of each stock is shown in 

Table 1 after market investigation and expert forecast; the 

above is a company's financial problem. 

Table 1. Table of Return and Investment Problem. 

Item Return Investment 1
U  

2
U  

3
U  

4
U  

0 0 0 0 0 
1 40 40 50 60 
2 100 80 120 80 
3 130 100 170 100 
4 160 110 200 120 
5 170 120 210 130 
6 170 130 230 140 

4.2. The Solution and Results 

The previous values are used to derive the recursive 

solution. The best unit is determined by the highest values in 

the rows ranging from 0 to 6. Row 0 has no value, so 0 is 

used; row 1 has a maximum value of 60. The highest value is 

280 units, which is $2,800,000, out of the maximum values 

(0, 60, 120, 180, 230, 260, and 280). (see Table 3). The same 

procedure is followed at each stage. In this study, the solution 

entails adding a system variable and a control variable to the 

model. The addition of system variables was intended to 

allow for optimal return at stage one when compared to 

previous work by Ohanuba, F. O et al. [21]. 

4.2.1. Solution and Results of the Financial Problem in the 

Modified Model 

In this case, the system control variable, ��  and state 

control variable, ���� are used to solve the DP problem of 

Bellman's model. 

1) S – total investment; 

2) � – item number of portfolios; 

3) �� – decision variable, investment assigned to item k; 

4) ( )k kg U – stage objective function, the return of ��; 

5) �� – state variables, investment of item k to item n; 

6) ���� � �� � ��– state transition equation; 

7) 	����� – the maximum return of ��; 

8) ���� – state control variables; 

9) 7� – system control variables. 

In all cases, �	 is a fixed value (arbitrary value), and � 

varies at a different stage. Exampe, at the first stage, � = 4 is 

maximum and k = 5, is an outlier at stage one. 

Therefore, the reverse dynamic programming equation can 

be recovered as follow: 

1 1 1( ) max{ ( ) ( )} ,k k k k k k k kf S g U f S x x+ + += + + +

10 , 10,k kx x +≤ ≤                       (25) 

0   U ,  = , -1,? ,1, k kS k n n≤ ≤  and .n k≥  
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If ����= 0, ��= 0 then, 	
����
��� . �� . ���� � 0, the 

original equation would be regained. The variable k = stages; 

the maximum stage in this problem is �  = k = 4, which 

implies that every calculation outside this range is irrelevant 

(� ≤ �). The value of k is determined by the value of	�. 

Solving the modified dynamic programming model in table 

method 

This study assumed, �� � 10, ���� = 5, and � = 4 at every 

state of all the stages. Recall that �	determines the value of k 

at every stage. 

4.2.2. Results of the Recursive Procedure from k = 4 to k = 1 

The First Stage 

Given fthat � = 4,  namely investing 

��	(��	=	0,	1,	2,	3,	4,	5,	6) in one stock (the fourth stock), in 

this case, 

4 4 4 4 5 5 4 5( ) max{ ( ) ( )} ,f S g u f s x x= + + + 4 40 u s≤ ≤     (26) 

At this stage, 	�(!�) does not exist since, �� is outside the 

maximum stage (limit boundry). Hence �� = 0 . Also, at

1 54, 0kk x x+= = =  because it is out the limit bound not 

withstanding the initial assumption, ����  = 5. The 

assumption applies in the introduced variable at � ≤ 3 that is 

at 4 10x = . 

Obviously, if �� = 0, 4 4 4(0) 0 0 0, ( ) 0f g U= + = =  

if �� = 1, 4 4 4(1) 60 0 60, ( ) 60f g U= + = =  

if �� = 2, 4 4 4(2) 80 0 80, ( ) 80f g U= + = =  

if �� = 3, 4 4 4(3) 100 0 100, ( ) 100f g U= + = =  

if �� = 4, 4 4 4(4) 120 0 120, ( ) 120f g U= + = =  

if �� = 5, 4 4 4(5) 130 0 130, ( ) 130f g U= + = =  

if �� = 6, 4 4 4(6) 140 0 140, ( ) 140f g U= + = =  

Table 2. Calculation of Optimal Return and Optimal item. 

S4

 
4 4

Max{ ( )}g u  
4 4
( )f S  

4
U  

0 0 0 0 
1 60 60 1 
2 80 80 2 
3 100 100 3 
4 120 120 4 
5 130 130 5 
6 140 140 6 

Optimal return at this stage is $1,500,000 and the optimal 

item here is 6. 

The Second Stage 

Given � = 3, namely investing ��	(��	=	0,	1,	2,	3,	4,	5,	6)	 
among the two stocks (third and fourth stocks), which makes 

maximum returns on the investment allocated to the two 

stocks. In this case, 

3 3 3 3 4 4 4( ) max{ ( ) ( )} ,f S g U f S x= + +  3 30 ,U S≤ ≤  

4 10x =                              (27) 

Table 3. Calculation of Optimal Return and Item. 

�� 

�� 
0 1 2 3 4 5 6 

3 3 4 4
Max{ ( ) ( )}g U f S+  ��(��) ��∗ (��, ��) 

0 0       0 10 (0,0) 

1 60 50      60 70 (0,1) 

2 80 110 120     120 130 (2,0) 

3 100 130 180 170    180 190 (2,1) 

4 120 150 200 230 200   230 240 (3,1) 

5 130 170 220 250 260 210  260 270 (4,1) 

6 140 180 240 270 280 270 230 280 290 (4,2) 

The optimal item in this case is (����) = (4,2), namely investment allocated to two stocks, 60,000: including investment in 

the fourth stocks, 20,000, and in the third stock, 40,000. The optimal return at this stage is $2,900,000. 

Third Stage 

Given namely � = 2, investing �+(�+ = 0,1,2,3,4,5,6)  among the three stocks (second, third and fourth stocks), which 

makes the maximum return on the investment allocated to the three stocks. Here, 

2 2 2 2 3 3 3( ) max{ ( ) ( )} ,f S g U f S x= + + 2 20 ,U S≤ ≤ 3 1x =                                               (28) 

The same calculation method was applied, and the results obtained in table as follows. 

Table 4. Calculation of Optimal Return and Item. 

�� 

�� 
0 1 2 3 4 5 6 

2 2 3 3
Max{ ( ) ( )}g U f S+  ��(��) ��∗ (��, ��, ��) 

0 0       0 10 (0,0,0) 

1 60 40      60 70 (0,0,1) 

2 120 100 80     120 130 (0,2,0) 

3 180 160 140 100    180 190 (0,2,1) 

4 230 220 200 160 110   230 240 (0,3,1) 

5 260 270 260 220 170 120  270 280 (1,3,1) 

6 280 300 310 280 130 230 180 310 320 (2,3,1) 
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Optimal item in this case is ��+, ��, ��) = (2,3,1), namely 

investment allocated to the three stocks, 60,000: including 

investment in the second stock, 20,000, in the third stock, 

30,000, and in the fourth stock, 10,000. Hence, optimal 

return is $3,200,000. 

Fourth Stage 

Given � = 1, namely investing ��(�� = � = 0,1,2,3,4,5,6) 

among the four stocks (first, second, third and fourth stocks), 

which makes the maximum return on the investment 

allocated to the four stocks. Here, 

1 1 1 1 2 2 2( ) max{ ( ) ( )} ,f S g U f S x= + +  1 10 ,U S≤ ≤  2 10.x =                                                  (29) 

Table 5. Calculation of Optimal Return and Item. 

�� 

�� 
0 1 2 3 4 5 6 

1 1 2 2
Max{ ( ) ( )}g U f S+  ��(��) ��∗ (����,��, ��) 

0 0       0 10 (0,0,0,0) 

1 60 40      60 70 (0,0,0,1) 

2 120 100 100     120 130 (0,0,2,0) 

3 180 160 160 130    180 190 (0,0,2,1) 

4 230 220 220 190 160   230 240 (0,0,3,1) 

5 270 270 280 250 120 170  280 290 (2,1,1,1) 

6 310 310 330 280 230 230 170 330 340 (2,0,3,1) 

 

The optimal item in this case is ���+���� = (2,0,3,1), 
namely investment allocated to the four stocks, 60,000: 

including investment in the first stock, 20,000, in the 

second stock, 0, in the third stock, 30,000, and in the fourth 

stock, 10,000. Finally, the optimal return this time is 

$3,400,000 compared to $3,300,000, which is the optimal 

return obtained when the variables was not introduced into 

the model. The value, $3,400,000 is the global maximum 

result in this study since it give the highest return among all 

the returns. 

5. Result of the Validity Test (s) 

This study followed the five-step procedure explained in 

the algorithm psuedocode to complete the validation test of 

the tabular method (See Figure 4). In the first step, libraries 

useful for the computation were imported. After, the 

resultant data were imported into the Python programming 

language software to complete the second step. The 

computation of the data points was done in step 3, and the 

testing of the algorithm was run to ensure the process was 

maintained to avoid error. Finally, the cluster is recomputed 

until the opimum values were obtained in clusters. The 

optimum values also indicated the maximum values among 

the clusters k = (1,2,3,4,5,6,7,8,9,10). The optimum value is 

obtained at k = 2. The Silhouette coefficient (SI) results 

obtained in this study fell within the range (0.7 and 0.9) at 

the best group shown in Table 6 and illustrated in Figure 6. 

At k = 2, the results fell between 70% – 94% efficiency. 

The validity test(s) has its unique benchmark for measuring 

perfect values. The Silhouette results were obtained in this 

study revealed that there is no error in the analysis of the 

problem and the best clusters were obtained in group k = 2 

(See Table 6). The group K=2 has all its value > 0.5, 

indicating good result considering the benchmark. The 

average validity values in the groups also fall within values 

approximately ≥ 0.5, implying robust results on the average 

Silhouette. 

5.1. Statistical Comparison of the Validity Models 

The statistics that form the bases which validity models of 

the type LI�8 , K�J 	= ∑ |(�8� − K8�)|[�@�  can be compared as 

presented here, especially when data are obtained as point 

clouds. Two such statistics that have been used for validity 

and evaluation are Silhouette index (�b) and Dunn index (a8) 
[40]. The evaluation is compared, and the best is chosen 

based on the plot in the computation that accurately indicate 

the optimal number of clusters. The likelihood ratio test can 

compare the adequacy or best fit of two models �8  and a8  
based on �z defined as 

�z = −2v�� ����
���

�~s¡	+ (A)              (30) 

In (30), �¢�  and �£�  represent the likelihood of �b 	and �b , 

respectively. The models (�b	and ab ) have been defined in 

(17) and (18). The degree of freedom in the chi square 

distribution is represented by A . The hypothesis test, �z 	is 

used to investigate that the two models fit the data equally; 

reject this if �z < –s¡	+ (A). The rejection of the hypothesis of 

equality of good fit reveals that �b  is better fit than ab . Hence, 

A is formulated as A = number of parameters in �b  – number 

of parameters in ab . 
In this study, the results of the clusters were obtained after 

the five steps explained in section 3.2.1 for Silhouette and 

Dunn tests and are shown in Tables 6 and 7, respectively. 

The tables show that the best cluster occurs at the group k = 2, 

where highest values were recorded. It is difficult to choose 

the best test based on observation of the outcomes in the two 

tables, since the values of the two tests fall within the same 

range (0–1). This shows that the structural patterns are 

similar for the the two tests. The researchers now obtain the 

plots of the six investments and use the outcome criterium in 

the plots to choose the best. 



 Mathematics and Computer Science 2022; 7(6): 130-143 140 
 

 

Table 6. Silhouette index of data points in generated clusters for 6 investments. 

Stage Number of Cluster (K) Ave. Validity test for �¤ 
No Inv. 1 2 3 4  

1 0.148 0.752 0.680 0.599 0.545 

2 0.204 0.940 0.740 0.630 0.629 

3 0.201 0.697 0.602 0.548 0.512 

4 0.189 0.708 0.634 0.630 0.540 

5 0.248 0.700 0.620 0.604 0.543 

6 0.219 0.780 0.608 0.544 0.538 

Range = (0.0–0.2) (0.7–0.9) (0.6–0.7) (0.5–0.6) (0.5-0.6) 

Table 7. Dunn index of data points in generated clusters for 6 investments. 

Stage Number of Cluster (K) Ave. Validity test for ¥¦ 
No Inv. 1 2 3 4  

1 0.511 0.798 0.780 0.799 0.722 

2 0.499 0.910 0.840 0.811 0.765 

3 0.523 0.710 0.697 0.598 0.632 

4 0.439 0.888 0.712 0.711 0.688 

5 0.490 0.811 0.721 0.692 0.678 

6 0.521 0.893 0.819 0.689 0.731 

Range = (0.0–0.5) (0.7–0.9) (0.6–0.8) (0.5–0.8) (0.6-0.8) 

5.2. Selection of the Best Validity Model Based on the Performance of the Plot 

 

Figure 5. Silhouette plot on the six investment items. 
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Figure 6. Dunn index plot on the six investment items. 

The plots of the two tests were computed using Python 

programming codes. Figures 5 and 6 show the investment 

plots for S I and D I, respectively. In comparison to the Dunn 

(D I) plots in Figure 6, the Silhouette (S I) plots in Figure 5 

were discovered to have attained the optimum value at exactly 

cluster k = 2 in all 6 items. In Dunn plots, the first two 

investments reached optimality at cluster k = 2, while the third 

through fifth investments did not but recorded optimality at 

cluster k = 1. As a result of the uniformity across the 

optimality class, the authors adopted the criterion in this 

section and chose the Silhouette as the best fit for the model. 

Dunn plot results revealed inconsistencies and errors in the 

validity measurement on the plots for those four investments. 

6. Conclusion 

In this study, the Bellman model of the DPP was 

successfully modified to yield the optimal return at stage 1. 

After comparing the outcome plots of the two validity tests, the 

study selected the model that provided the best fit for the 

investment returns. Illustrations of the development and 

application of the Modern Portfolio Theorem in the selection 

of investments for competing stocks. This paper explained 

how the variances and correlations of each stock are derived; 

selection is contingent on the market's values and suitability; 

and the Modern Portfolio Theory (MPT) provided a selection 

strategy for investors and financial managers. This study 

provided the equation for the model and the procedure for the 

successful selection of a robust portfolio. Even when the 

market is unrestricted and the curve is aligned with the capital, 

as depicted in Figure 1, investors must perform additional 

optimization to realize the anticipated return. The research 

offered Lastly, the evaluation of the analysis which need not be 

negleted in order to ensure the accuracy of the outcome 

analysis; these are the novelties of this study. The validity tests 

and their results revealed a high level of effectiveness of 94%; 

the best probability value in group k = 2 is 0.94. (See Table 6). 

Therefore, investors are advised not to stop their investment 

planning at the selection phase. Before deciding to invest in the 

chosen portfolio or assets, they are advised to obtain an 

estimate of their anticipated returns and validate it. Errors or 

mistakes in financial management could be drastically reduced 

as a result of this study. Future research may investigate the 

statistical test procedure of the likelihood ratio for comparing 

two or more models. This study paves the way for future 

research on the application of validity tests to additional 

financial management models. 
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