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Abstract: The modal Θ-valent logic is a logic that contains all the thesis of the classical logical calculus and, besides allows
to express notions of possibility, of necessity, and more others. The modal Θ-valent sets are the supports in term of the structure
of the Θ-valent rings. A Θ chr (mΘ) is a structure which is rich at the same time of inheritance in the meaning of the romanian
academician Gr. C. Moisil, as the algebraic model of a such logic. The set ZnZ contains the set Z and the elements xnZ such that
the support of x is not congruent to 0 modulo n. In this paper the purpose is to define on ZpZ −Z, p prime, a notion of quadratic
residues and quadratic character which respects its structure of mΘs. Hoping that this approach will bring something of interest
to the notion of quadratic residues. First of all, we construct the modal Θ-valent congruences of (ZnZ, Fα). We characterize
the mΘ set (ZnZ, Fα) and we then give some arithmetical and intrinsic mΘ parameters of ZnZ which lead us to the notion of
factorial of m without n in ZnZ, the mΘ quotient of (ZnZ, Fα) modulo (pZnZ) and a complete system of mΘ residues modulo
pZnZ, Nn, p. After that, we define a p-valent modal quadratic residue, p prime. We characterize some properties of p-valent
modal quadratic character and p-valent modal quadratic residue of pk which establish the difference between the mΘ Euler’s
theorem and the Euler’s theorem in the classical arithmetic. Later, we establish the theorem for determining the p-valent modal
quadratic character of a ∈ ZpZ − Z with respect to pk. This theorem is a non-classical version of Gauss’s lemma. Finally, we
establish an example introducing the law of quadratic reciprocity of Gauss.

Keywords: Modal Θ-valent Sets, Modal Θ-valent Congruences, Number Theory, p-valent Modal Residues

1. Introduction
Number theory is a branch of pure mathematics devoted

primarily to the study of the integers and integer-valued
functions [1, 2, 3]. It was Gauss who found the first complete
proof of the quadratic reciprocity law [4, 5]. The proof of
the quadratic reciprocity law is based on Gauss’s lemma [16].
The theory of quadratic residues has proved to be very useful
in several areas of mathematics [7, 8, 11, 12]. An integer
a which is not a multiple of a prime p is called a quadratic
residue modulo p if the quadratic equation x2 = amod p has
a solution [16].

The notion of modal Θ-valent set noted (ZnZ, Fα) is
defined by F. Ayissi Eteme in [10]. This article presents
the intrinsic methodology of (ZnZ, Fα) as an introductory
example of the use of Θ-valent chrysippian modal logic in the
construction, Θ-valent chrysippian mathematical structures.

With the hope that these deploy hidden results in the essential
and anatomical inadequacy of the bivalence of classical,
unimodal logic.

Perhaps the most popular of all proofs of the Quadratic
Reciprocity Law [6] is based on a result known as Gauss’
Lemma. The purpose of this paper is to define on the mΘ
set ZpZ − Z, a notion of the quadratic residues which respects
its structure of mΘ set [9].

In the section 2, these are the preliminaries on the modal
Θ-valent congruences of (ZnZ, Fα). Section 3 presents the
notion of mΘ quadratic residues, afterwards the notion of
p-valent modal quadratic character. Section 4 is devoted
to establish the theorem for determining the mΘ quadratic
character.
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2. Preliminaries

2.1. The mΘ Set (ZnZ, Fα) [13]

Let us set xnZ = (p+ αr)α∈I∗ where x ∈ Z \
nZ (x = pn+ r; p, r ∈ Z; 1 ≤ r ≤ n− 1).

xnZ ∈

{
Z2 if n = 2;

Zn−1 if n ≥ 3.

Let us set

ZnZ = Z ∪ {xnZ : ¬ (x ≡ 0 (modn))} .

We define for all α ∈ I∗;
Fα: ZnZ −→ ZnZ

a 7−→
{
a if a ∈ Z
b1 + αb2 if a = bnZ, b ∈ Z \ nZ

Where b = b1n+ b2; b2, b1 ∈ Z; 1 ≤ b2 ≤ n− 1.
(ZnZ, Fα) is a mΘ set such that C(ZnZ, Fα) = Z.

2.2. The mΘ Congruences of (ZnZ, Fα)

Let p ∈ N∗ and let ρp be defined on ZnZ as follows:

∀x, y ∈ ZnZ, xρpy ⇐⇒ ∀α ∈ I∗, Fαx = Fαy (mod p) .

Proposition 2.1. [14] ρp defined on ZnZ as above is an
equivalence relation on ZnZ compatible with the structure of
mΘ set (ZnZ, Fα).

Proof [14]
Notation 2.1. We shall denote xρpy by x ≡ y (pZnZ).
Definition 2.1. [14] If p ≥ n, we define the mΘ quotient of

(ZnZ, Fα) modulo (pZnZ)as follows:

ZnZ
pZnZ

=

{
x

pZnZ
;x ∈ ZnZ

}
.

Proposition 2.2. [15] (ZnZ, Fα) is the mΘ set of mΘ
relative integers.
∀α ∈ I∗;

Fα
pZnZ

: ZnZ
pZnZ

−→ ZnZ
pZnZ

x
pZnZ

7−→ Fα
pZnZ

(
x

pZnZ

)
= Fαx

pZ

Then
(

ZnZ
pZnZ

, Fα
pZnZ

)
is a mΘ set if and only if p ≥ n− 1.

Proof [15]
Lemma 2.1. [13] According to the proposition 2.2 above, the

following axioms are equivalent:
1. p ≥ n− 1;
2. ∀α, β ∈ I∗, if α 6= β then Fα

pZnZ
6= Fβ

pZnZ
.

Proof [13]
Proposition 2.3. If 2 ≤ n ≤ p, then ( ZnZ

pZnZ
, Fα
pZnZ

) is a mΘs
which contains np elements.

Proof Let us set Z0Θ = Z and ZrΘ = {xnZ; x ∈
Z and x ≡ r(modn)} with 1 ≤ r ≤ n− 1.

1. If r 6= r′ : 0 ≤ r, r′ ≤ n− 1, ZrΘ ∩ Zr′Θ = ∅.
ZnZ
pZnZ

= ∪n−1
r=0

ZrΘ
pZnZ

and card ZnZ
pZnZ

=
∑n−1
r=1 card

ZrΘ
pZnZ

.

In particular, Z0Θ

pZnZ
= Z

pZnZ
= Z

pZ ; therefore card Z0Θ

pZnZ
=

p.
2. If x = qn + r and y = q′n + r; with 0 ≤ r ≤ n − 1,

xnZ
pZnZ

, ynZ
pZnZ

∈ ZrΘ
pZnZ

⇐⇒ q ≡ q′(modn); therefore
card ZrΘ

pZnZ
= p.

Hence,

card
ZnZ
pZnZ

= np.

Proposition 2.4. [9] ∀x, y ∈ ZnZ
1. If x ∈ Z and x ≡ y (pZnZ) then y ∈ Z;
2. If x /∈ Z and x ≡ y (pZnZ) then y /∈ Z.

Proof [9]
Proposition 2.5. [14] If x, y ∈ ZnZ, the following axioms

are equivalent:
1. x ≡ y (pZnZ);

2.

{
x ≡ y (mod p) if x ∈ Z (therefore y ∈ Z) ;

s (x) ≡ s (y) (modnp) if x /∈ Z (therefore y /∈ Z) .

Proof [14]
Definition 2.2. [10] We shall call:
1. The mΘ congruence in (ZnZ, Fα), the mΘ equivalence

relation denoted ρp, p ∈ N∗ and defined as above.
2. AmΘ integer modulo p (a residualmΘ class modulo p),

the class of equivalence modulo pZnZ of every x ∈ ZnZ
and denoted x

pZnZ
.

3. The set of mΘ integers modulo p, the mΘ set(
ZnZ
pZnZ

; Fα
pZnZ

)
.

4. The set of integers modulo p, the set: C
(

ZnZ
pZnZ

; Fα
pZnZ

)
=

Z
pZ .

5. The α-modality of x
pZnZ

, the integer modulo p defined as
follows:
∀α ∈ I∗, Fα

pZnZ

(
x

pZnZ

)
= Fαx

pZ ∈
Z
pZ .

6. A mΘ representative of a
pZnZ

, (a ∈ ZnZ), every b
element of ZnZ, defined as follows:

• If a ∈ Z (therefore b ∈ Z) and then b ≡
a(modnp).

• Otherwise a /∈ Z (then b /∈ Z) and then [s(a) ≡
s(b)(modnp)⇐⇒ b ≡ a(pZnZ)].

Proposition 2.6. If a ≡ b(pZnZ) and a ≡ b(p′ZnZ) then
a ≡ b(l.c.m. (p, p′)ZnZ).

Proof Indeed, if a, b ∈ Z a ≡ b(p) et a ≡ b(p′) then
a ≡ b(l.c.m. (p, p′)).

Otherwise, a ≡ b(pZnZ) and a ≡ b(p′ZnZ). However
l.c.m.(np, np′) = nl.c.m.(p, p′) therefore s(a) ≡ s(b)(n ×
l.c.m.(p, p′)).
So

a ≡ b(l.c.m. (p, p′)ZnZ).

Definition 2.3. [9] Let a, b ∈ ZnZ. We say that a and b are
s-coprime if g.c.d.(s(a), s(b)) = 1 or g.c.d.nZ(a, b) = 1nZ.

2.3. Some Intrinsic mΘ Parameters of ZnZ

In Z2Z,e(5 ≡ 0(mod 2)) whereas 5! ≡ 0(mod 2). In Z2Z,
5! ∈ 2Z whereas 52Z ∈ Z2Z − Z. In Z, the notion of factorial
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loses all interest as soon as m ∈ ZnZ − Z. It is therefore
quite natural to define on ZnZ a factorial law appropriate to the
structure mΘs.

Definition 2.4. [9] Let m ∈ N∗nZ. We define factorial of m
without n in ZnZ as the element of NnZ noted

1. m! > n < if m ∈ N∗ with the definition m! > n <=
m! devoid of any multiple factors of n;

2. m!nZ > n < if m ∈ NnZ − N with the definition

m!nZ > n <= [(s(m))! > n <]nZ.

Example 2.1. [9]
1. In Z2Z, we have:

52Z!2Z > 2 <= (5! > 2 <)2Z = (1× 3× 5)2Z = 152Z.

2. In Z3Z, we have:

53Z!3Z > 3 <= (5! > 3 <)3Z = (1× 2× 4× 5)3Z.

Definition 2.5. Let n, p ∈ N, 2 ≤ n ≤ p; p 6= 2. p prime.
(ZnZ, Fα) a mΘ set. a ∈ ZnZ − Z and e(p|s(a)).
If r, r′ = 0, 1, 2, · · · , n− 1, we define:

1. Nr n = {a ∈ ZnZ : s(a) ∈ N, s(a) ≡ r(modn)}; if
r 6= r′, Nr n ∩ Nr′ n = ∅.

2. Nr np = {a ∈ Nr n : s(a) = kn + r, k =
0, 1, · · · , p − 1}. Nn, p = ∪n−1

r=0Nr np and N∗n, p =

∪n−1
r=1Nr np.

3. cardNr np = p; cardNn p = np; cardN∗n, p = (n −
1)p.

Observation 2.1. When (ZnZ, Fα)
pZnZ

, the mΘ quotient of
(ZnZ, Fα) modulo (pZnZ) is defined, Nn, p is a complete
system of mΘ residues modulo pZnZ. In general, s(Nn, p) =
{s(x), x ∈ Nn, p} is not a complete system of residues modulo
np, prime with np. However, s(N∗n, p) is a complete system of
residues modulo p2, prime with p2. In particular if p is prime,
p ≥ 3, s(N∗p, p) is a complete system of residues modulo p2,
prime with p2.

In the whole sequence n = p prime p ≥ 3, because
e(p|s(a)) and e(p2|s(a)). So ∃ta ∈ N∗p, p : s(ta) ≡
s(a)(mod p2).
∀x ∈ N∗p, p, ∃x′ ∈ N∗p, p : s(x)s(x′) ≡ s(a)(mod p2)

means that s(xx′) ≡ s(a) (mod p2). Thus

x ∈ N∗p, p =⇒ ∃x′ ∈ N∗p, p such that xx′ ≡ a(pZpZ).

3. mΘ Quadratic Residues

Definition 3.1. For p a prime, an mΘ integer a ∈ ZnZ −
Z such that e(p|s(a)), is called a p-valent modal quadratic
residue p, aRpZpZ, if the congruence x2 ≡ a(pZpZ) has a
solution.

Otherwise it is called a p-valent modal quadratic nonresidue
p, aNpZpZ, this means that if x ∈ N∗p, p then ∃x′ ∈ N∗p, p−{x}
such that xx′ ≡ a(pZpZ).

Remark 3.1. In either case, if x, x′ ∈ N∗p, p and xx′ ≡
a(pZpZ), we say that x′ is the p-valent modal associate of x
with respect to p.

Theorem 3.1. Let x ∈ N∗p, p, p prime, and a ∈ ZnZ − Z
such that e(p|s(a)). The congruence x2 ≡ a(pZpZ) admits
two solutions x0 and p2 − x0 in N∗p, p.

Proof Indeed, x2 ≡ a(pZpZ) means that s(x2) ≡
s(a)(mod p2) therefore (s(x))2 ≡ s(a)(mod p2).

(s(p2 − x))2 = (p2 − s(x))2 = p4 − 2p2s(x) + (s(x))2 ≡
s(a)(mod p2), thus (s(p2 − x))2 ≡ s(a)(mod p2) =⇒ p2 −
x ≡ a(pZpZ). If x2 ≡ a(pZpZ) then (p2 − x)2 ≡ a(pZpZ).
So the congruence x2 ≡ a(pZpZ) admits two solutions in
N∗p, p.

Conversely if x1 and x2 are two solutions modulo (pZpZ) of
x2 ≡ a(pZpZ) that is x2

1 ≡ a(pZpZ) and x2
2 ≡ a(pZpZ).

(s(x1))2 ≡ s(a)(mod p2) and (s(x2))2 ≡ s(a)(mod p2).
Thus, (s(x2))2 − (s(x1))2 = (s(x2) + s(x1))(s(x2) −

s(x1)) ≡ 0(mod p2). So, either x2 ≡ x1(pZpZ) or x2 ≡
−x1(pZpZ) ≡ p2 − x(pZpZ).

Remark 3.2. In extension, we have:

s(N∗p, p) = {s(x1), p2 − s(x1)} ∪ (

p(p−1)−2
2⋃
i=1

{s(yi), s(y′i)}).

∀i ∈ {1, · · · , p(p−1)−2
2 }, yi, y′i ∈ N∗p, p − {x1, p

2 − x1}; yi 6= y′i such that s(yi)s(y
′
i) ≡ s(a)(mod p2).

Thus s(x1) ≡ s(x1)(mod p2), p2 − s(x1) ≡ −s(x1)(mod p2) means that

s(x1)(p2 − s(x1)) ≡ −(s(x1))2 ≡ −s(a)(mod p2).

It follows that

p(p−1)−2
2∏
i=1

s(yi)s(y
′
i) ≡ s(a)

p(p−1)−2
2 (mod p2),

with
s(a)s(a)

p(p−1)−2
2 = s(a)

p(p−1)
2 .
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Corollary 3.1. If there is x ∈ N∗p, p such that x2 ≡ a(pZpZ) then∏
x∈N∗p, p

x ≡ −a
p(p−1)

2 (pZpZ).

Proof According to the previous remark

N∗p, p = {x1, p
2 − x1} ∪ (

p(p−1)−2
2⋃
i=1

{yi, y′i}).

Thus,
∏
x∈N∗p, p

s(x) ≡ s(x1)s(p2 − x1)
∏ p(p−1)−2

2
i=1 s(yi)s(y

′
i) ≡ −s(a)

p(p−1)
2 (pZpZ).

So, ∏
x∈N∗p, p

x ≡ −a
p(p−1)

2 (pZpZ).

3.1. p-valent Modal Quadratic Character

The data remains the same: 3 ≤ p, p prime and a ∈ ZpZ − Z : e(p|s(a)) =⇒e(p2|s(a)). We have the following equivalence:
1. a p-valent modal quadratic residue of p;
2. s(a) quadratic residue of p2.

We thus have the following definition (
s(a)

p2

)
=

{
1 if s(a)Rp2

−1 if s(a)Np2

Definition 3.2. We call p-valent modal quadratic character of a relatively to p the element of ZpZ denoted

(
a
p

)
pZ

and defined

as follows (
a

p

)
pZ

=

{
1pZ if aRpZpZ
(−1)pZ if aNpZpZ

By definition (
s(a)

p2

)
= s

(
a

p

)
pZ

.

Remark 3.3. 1. If a ≡ b(pZpZ) then
(
b
p

)
pZ =

(
a
p

)
pZ.

2. if aRpZpZ then
∏
x∈N∗p, p

x ≡ −
(
a
p

)
pZa

p(p−1)
2 (pZpZ).

If a = 1pZ, 12
pZ = 1pZ so 12

pZ ≡ 1pZ(pZpZ), 1pZRpZpZ and thus
( 1pZ
p

)
= 1pZ.

Therefore ∏
x∈N∗p, p

x ≡ −1pZ(pZpZ).

Theorem 3.2. It follows that (1pZ
p

)
pZ ≡ 1pZ(pZpZ),

(−1pZ
p

)
pZ ≡ (−1pZ)

p(p−1)
2 (pZpZ).

Proof We know that
∏
x∈N∗p, p

x ≡ −a
p(p−1)

2 (pZpZ) ≡ −
(
a
p

)
pZa

p(p−1)
2 (pZpZ) and

∏
x∈N∗p, p

x ≡ −1pZ(pZpZ),. So

(a
p

)
pZa

p(p−1)
2 ≡ −1pZ(pZpZ).

If a = 1pZ, we have
( 1pZ
p

)
pZ ≡ 1pZ(pZpZ) and

(
1
p2

)
≡ 1(mod p2).

If a = −1pZ, we have
(−1pZ

p

)
pZ ≡ (−1pZ)

p(p−1)
2 (pZpZ) and

(−1
p2

)
≡ (−1)

p(p−1)
2 (mod p2).
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Observation 3.1.
max s(N∗p, p) = p(p− 1) + p− 1 = p2 − 1.

Example 3.1.
∏
x∈N∗p, p

x = (p2 − 1)pZ!pZ > p <= ((p2 − 1)! > p <)pZ and
∏
x∈N∗p, p

s(x) = (p2 − 1)! > p <. For p = 3,

N∗3, 3 = {x3Z > 3 <}
= {13Z, 23Z, 43Z, 53Z, 73Z, 83Z}

∏
x∈N∗3, 3

x = (32 − 1)3Z!3Z > p <= ((32 − 1)! > 3 <)3Z

= (1× 2× 4× 5× 7× 8)3Z ≡ −13Z(3Z3Z)

3.2. p-valent Modal Quadratic Residue of pk

Definition 3.3. More generally, if 3 ≤ p, p prime, ∀k ∈ N∗
we note respectively:

1. N0ppk = Npk−1 = {0, 1, · · · , pk − 1}.
2. Nrppk = {a ∈ Nr p : s(a) = k′p + r; k′ =

0, 1, · · · , p − 1, · · · , pk − 1}. If r ∈ {1, · · · , p −
1}, Nr p = {a ∈ ZpZ − Z; s(a) ∈ N, s(a) ≡
r(mod p)}.

3. Nppk =
⋃p−1
r=0 Nrppk ; N∗p, pk =

⋃p−1
r=1 Nrppk .

We have cardNrppk = pk, cardNppk = pk+1,
cardN∗p, pk = (p− 1)pk.
N∗p, pk is a complete system of p-valent modal residues

modulo pkZpZ. s(N∗p, pk) is a complete system of residues
modulo pk+1 prime with pk+1. Thus if x ∈ s(N∗p, pk),
s(xN∗p, pk) also is a complete system of residues modulo pk+1

prime with pk+1. So, if a ∈ ZpZ − Z and e(p|s(a)),
e(pk|s(a)): ∀x ∈ N∗p, pk , ∃x

′ ∈ N∗p, pk such that s(xx′) ≡
s(a)(mod pk+1). Therefore,

xx′ ≡ a(mod pkZpZ).

Definition 3.4. We say that a is:
1. p-valent modal quadratic residue of pk if and only if
∃x ∈ N∗p, pk : x2 ≡ a(mod pkZpZ).

2. non p-valent modal quadratic residue of pk if and
only if ∀x ∈ N∗p, pk , ∃x

′ ∈ N∗p, pk − {x} such that
xx′ ≡ a(mod pkZpZ).

Observation 3.2. We observe that the congruence x2 ≡
a(mod pkZpZ) admits two solutions in N∗p, pk if we can find

x1 in N∗p, pk such that x2
1 ≡ a(mod pkZpZ). Then we get

two cases: either ∃x ∈ N∗p, pk , x
2 ≡ a(mod pkZpZ) and∏

x∈N∗
p, pk

s(x) ≡ −s(a)
(p−1)pk

2 (mod pk+1) so
∏
x∈N∗

p, pk
x ≡

−a
(p−1)pk

2 (mod pkZpZ); or ∀x ∈ N∗p, pk , ∃x ∈ N∗p, pk − {x}
such that xx′ ≡ a(mod pkZpZ).

In either case, x′ (x′ = x or x′ 6= x) is said to be the p-valent
modal associate of x with respect to pk.

But in this second case (x′ 6= x)∏
x∈N∗

p, pk
s(x) ≡ s(a)

(p−1)pk

2 (mod pk+1);∏
x∈N∗

p, pk
x ≡ a

(p−1)pk

2 (mod pkZpZ).

Definition 3.5. We call:
1. quadratic character of s(a) relatively to pk+1(

s(a)

pk+1

)
=

{
1 if s(a)Rpk+1

−1 if s(a)Npk+1

2. p-valent modal quadratic character of a with to pk.
It is the element of ZpZ denoted

(
a
pk

)
pZ and defined as

follows: ( a
pk
)
pZ =

{
1pZ if aRpkZpZ
−1pZ if aNpkZpZ

Remark 3.4. We have

s
( a
pk
)
pZ =

(
s(a)

pk+1

)
.

If a ≡ b((mod pkZpZ) , then
(
a
pk

)
pZ =

(
b
pk

)
pZ.

Theorem 3.3. It follows that (1pZ
pk
)
pZ ≡ 1pZ(pkZpZ),

(−1pZ
pk

)
pZ ≡ (−1pZ)

pk(p−1)
2 (pkZpZ).

Proof We know that
∏
x∈N∗

p, pk
x ≡ −a

pk(p−1)
2 (pkZpZ) ≡ −

(
a
pk

)
pZa

pk(p−1)
2 (pkZpZ) and

∏
x∈N∗

p, pk
x ≡ −1pZ(pkZpZ). So

( a
pk
)
pZa

pk(p−1)
2 ≡ −1pZ(pkZpZ).
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If a = 1pZ, we have
( 1pZ
pk

)
pZ ≡ 1pZ(pkZpZ) and

(
1
pk

)
≡ 1(mod pk+1).

If a = −1pZ, we have
(−1pZ
pk

)
pZ ≡ (−1pZ)

pk(p−1)
2 (pkZpZ) and

(−1
pk

)
≡ (−1)

pk(p−1)
2 (mod pk+1).

Observation 3.3. maxN∗p, pk = pk(p− 1) + pk − 1 = pk+1 − 1,

∏
x∈N∗

p, pk

x ≡
[
(pk+1 − 1)! > p <

]
pZ
.

Remark 3.5.
(

(pk+1 − 1)! > p <

)
pZ
≡ −1pZ(pkZpZ) and (pk+1 − 1)! > p <≡ −1(mod pk+1).

None of these results is remotely Wilson’s theorem.

4. Theorem for Determining the mΘ
Quadratic Character

The data is the same p ∈ N∗ p ≥ 3, p prime; k ∈ N∗;
a ∈ ZpZ − Z and e(p|s(a)).

Definition 4.1. s(a) admits a unique residue modulo pk+1

comprised between − 1
2p
k+1 and 1

2p
k+1, because − 1

2p
k+1 +

pk+1 = 1
2p
k+1, called minimal residue of s(a) modulo pk+1.

Observation 4.1. 1. It is positive if the smallest positive
residue of s(a) modulo pk+1 is between 0 and 1

2p
k+1

and it is the smallest positive residue.
2. It is negative if the smallest positive residue of s(a)

modulo pk+1 is between 1
2p
k+1 and pk+1 and it is then

the opposite of this smallest residue.
The following theorem is a non-classical version of Gauss’s

lemma, it is the theorem for determining the p-valent modal
quadratic character of a ∈ ZpZ − Z with respect to pk.

Theorem 4.1. Let p ≥ 3, p prime; k ∈ N∗; a ∈ ZpZ − Z
such that e(p|s(a)); (

a

pk

)
pZ

= (−1)
µpk
pZ

µpk is the number of qs(a), 1 ≤ q ≤ 1
2 (p − 1)pk, whose

smallest residue modulo pk+1 is greater than 1
2p
k+1.

Proof Through observation 4.1, we can consider the 1
2 (p −

1)pk elements of ZpZ − Z as follows

{aq : q = 1, 2, · · · , 1

2
(p− 1)pk}.

We have two cases:
1. r1, r2, · · · , rλpk the minimum residues modulo pk+1 of

the qs(a) of smallest positive residue modulo pk+1 less
than 1

2p
k+1.

2. −r′1, −r′2, · · · , −r′µpk the minimum residues modulo
pk+1 of the qs(a) of smallest positive residue modulo
pk+1 greater than 1

2p
k+1.

We thus have λpk + µpk = 1
2 (p− 1)pk.

∀i, j; ifi 6= j e
(
ri ≡ r′j (mod pk+1)

)
e
(
ri ≡ rj (mod pk+1)

)
e
(
r′i ≡ r′j (mod pk+1)

)
Consequently, r1, r2, · · · , rλpk , −r′1, −r′2, · · · , −r′µpk is

a rearrangement of the integers q: q = 1, 2, · · · , 1
2 (p− 1)pk.

Since

1
2 (p−1)pk∏
q=1

(qs(a)) = (s(a))
1
2 (p−1)pk ·

(1

2
(p− 1)pk

)
!

≡
λpk∏
i=1

ri

µpk∏
j=1

(−r′j)(mod pk+1)

≡ (−1)µpk(
1

2
(p− 1)pk)!

so (s(a))
1
2 (p−1)pk ≡ (−1)µpk (mod pk+1) and a

1
2 (p−1)pk ≡ (−1)µpk (mod pkZpZ). Or, a

1
2 (p−1)pk ≡

(
a
pk

)
pZ (mod pkZpZ),

therefore
(
a
pk

)
pZ ≡ (−1)

µpk
pZ (mod pkZpZ).

By definition,
(
a
pk

)
pZ ∈ {1pZ, −1pZ} then ( a

pk
)
pZ = (−1)

µpk
pZ .
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Example 4.1. If a = 2pZ, p ≥ 3 then

{qs(a) : q = 1, 2, · · · , 1

2
(p− 1)pk} =

{2q : q = 1, 2, · · · , 1

2
(p− 1)pk} = {2, 4, · · · , (p− 1)pk}.

Obviously, λpk = 1
2

[
1
2p
k+1
]
, where [x] denotes the integer value of x. So, λpk =

[
1
4p
k+1
]

and λpk = 1
2 (p− 1)pk−

[
1
4p
k+1
]
.

Since p ≥ 3:
1. Either p ≡ 1(mod 4), so p = 4m+ 1, pk ≡ pk+1 ≡ 1(mod 4).
pk+1 = 4n+ 1 thus 1

4p
k+1 = n+ 1

4 and
[

1
4p
k+1
]

= n = pk+1−1
4 .

Thus if p ≡ 1(mod 4) then µpk = (pk+1 − 2pk + 1).
2. Or p ≡ 3(mod 4), pk ≡ 1(mod 4); pk+1 ≡ 3(mod 4) respectively if k ≡ 0(mod 2), k ≡ 1(mod 2).

• if k ≡ 0(mod 2),
pk+1 ≡ 1(mod 4) pk = 4n + 1; pk+1 ≡ 3(mod 4), pk+1 = 4m + 3;

[
1
4p
k+1
]

= m = pk+1−3
4 . So µpk =

1
4 (pk+1 − 2pk + 3), p ≡ 3(mod 4),
k ≡ 0(mod 2).

• If k ≡ 1(mod 2), pk ≡ 3(mod 4), pk+1 ≡ 1(mod 4)

pk+1 = 4m′ + 1,
[

1
4p
k+1
]

= m′ = pk+1−3
4 . Then µpk = 1

4 (pk+1 − 2pk + 3), p ≡ 3(mod 4),
k ≡ 1(mod 2).

Since
(

2
pk+1

)
= (−1)µpk ,

(
2

pk+1

)
= 1⇐⇒ (−1)µpk = 1⇐⇒ µpk ≡ 0(mod 2).

3. If p ≡ 1(mod 4) then 1
4 (pk+1 − 2pk + 3) ≡ 0(mod 2), pk+1 − 2pk + 3 ≡ 0(mod 8).

Thus,
(

2
pk+1

)
= 1 and p ≡ 1(mod 4) =⇒ pk+1 − 2pk + 1 ≡ 0(mod 8), p ≡ 1(mod 4).

5. Conclusion
This note shows that the study of the notion of quadratic

residues [4, 6] on the mΘ set ZpZ − Z, p prime, leads to
the notion of p-valent modal quadratic character. The p-
valent modal quadratic character is a Θ-valent modal version
of Legendre’s symbol [8]. The results contained in this article
have no place in classical arithmetic [5], however constitute
an extension in ZpZ. These results are also widely used in the
intrinsic arithmetic of ZnZ namely the Fermat-Euler theorem
in ZpZ, in quotient p-valent modal rings.
At the end of this study, some interesting problems remain to
be solved:

1. We would like to establish the mΘ quadratic reciprocity
law and give it a proof by the Gauss’s Lemma.

2. We should give a suggestive description of mΘ Euler’s
function and mΘ Möbius function.
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