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Abstract: IC (Index Calculus) algorithm is the most effective probability algorithm for solving discrete logarithm of finite 

prime fields, and IICA (improved Index Calculus algorithm) is an improved algorithm based on IC in the third stage. The essence 

of IICA is to convert the number required to solve the discrete logarithm into the product of the power of prime factors, and then 

multiply every prime factor larger than the smooth bound by a smooth number approximating a large prime p from the right end, 

that is, to perform congruence transformation for every prime factor larger than the smooth bound. If all prime factors larger than 

the smooth bound fall within the smooth bound, the number required to solve the discrete logarithm is successfully solved. 

Unfortunately, given a large prime number p, some prime factors do not have congruent transformations of smooth numbers. For 

this, this paper analyzes the features of the IICA algorithm, based on the characteristics of IICA algorithm, is given when the 

IICA algorithm cannot undertake congruence transformation termination conditions, namely when  ⌈ p/pi ⌉ not smooth algorithm 

is terminated, where pi is greater than a smooth boundary element factor. According to the ⌈ p/pi ⌉ not smooth algorithm was 

terminated when judging conditions, optimized the IICA algorithm, and the correctness of the optimization algorithm is verified 

by an example. 
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1. Introduction 

IC algorithm is the most effective method to solve the 

discretized logarithm problem in a finite field of prime 

numbers [1-9]. IC algorithm also plays an important role in 

solving discrete logarithms of elliptic curve cryptosystems 

[15-17]. IC algorithm is divided into three stages to solve the 

discrete logarithm. The first stage is to randomly select t+d 

smooth numbers, where t is the number of prime numbers in 

the smooth bound. The second stage is to solve the discrete 

logarithm of all prime factors in the smooth boundary, and 

the third stage is to solve the discrete logarithm of the given 

number. 

IICA uses the approximation method to optimize the 

random trial of IC algorithm in stage 3 and achieves good 

results [10]. However, what is the end condition of IICA, 

what is the probability of success, and what is the size of the 

smooth boundary need to be further discussed. In fact, the 

key to the success of the IICA algorithm is that the maximum 

prime factor after each congruence transformation must be 

decreasing, and the congruence transformation assumes that 

the quotient of p  divided by the prime number q  is 

smooth. Therefore, it is of great value to analyze the 

characteristics of IICA and optimize IICA algorithm for 

improving the application of IICA. 

2. Preliminaries 

2.1. Prime Finite Fields 

Let p  is a large prime number, 1N p= −  is the order of 

the cyclic group about 
*
pZ , and 

*
pg Z∈  is the generator of 

the cyclic group, that is mod 1
N

g p = . For *
Py Z∀ ∈ , find 

loggx y= , this is the discrete logarithm solution problem 

over prime finite fields pF . 

In addition, according to literature [10], Equation (1) is 

established. 
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2.2. IC Algorithm Overview 

The basic idea of IC algorithm is to construct a set of small 

prime numbers called factor basis on the cyclic group *
PZ , 

expressed as 1 2{ , , , }tM p p p= ⋯ , the set M  is the set of 

initial prime numbers. The IC algorithm is divided into two 

stages (Literature [12] is divided into three stages). The first 

stage constructs and solves t d+  ( d  is an appropriate 

constant) linear equations to find the discrete logarithm of 

each element in the factor base; In the second stage, a number 

m is randomly selected. If all the prime factors of myg after 

decomposition fall into the decomposition basis, then the 

discrete logarithm of y  is calculated. 

Definition 1: A smooth integer is an integer that has only 

small prime factors 1 2, , , tp p p⋯ that satisfies relation 

1 2 tp p p< < <⋯ . An integer is T smooth−  if all of its 

prime factor are less then or equal to T . T  is called a smooth 

bound, tp T≤ . 

Each equation of a system of linear equations is congruence 

to a modular p . In the first stage, the process of constructing 

the system of linear equations is as follows: *
Pz Z∀ ∈  is 

selected randomly. If zg  is smooth, then zg  is decomposed 

and the next equation is found until t d+  linear equations are 

found. Solve the system of linear equations and find the 

discrete logarithm of all the elements in the decomposition 

basis. 

In the second stage, *
Pm Z∀ ∈  is randomly selected and 

myg calculated, and myg  is tried to be written as the product 

of elements in set M , i.e., equation (2). 
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If successful, equation (3) is the discrete logarithm. 

1

log ( log ) mod ( 1)

t
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i

y d p m p

=
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Otherwise, the second stage is repeated until myg  is 

written as the product of the elements in the set M . 

2.3. Overview of IICA [10] 

Let 
1

j

k
w

j

j

y q

=

= ∏ , for 
* ( 1,2, , )j Pq Z j k∀ ∈ = ⋯  be a prime 

and 1 2 kq q q< < <⋯ . 
j

p
r

q
=
� �� �
� �
� �� �� �

 represents the product of the 

prime powers in set M , r  is a smooth number. 

Definition 2: Suppose j tq p> ( tp  is the largest element in 

the set M ), the symbol " ⇒ " represents a congruence 

transformation, then the operation 

( * ) mod
mod mod

r y P
y P P

r
⇒  is said to be a congruence 

transformation of mody P . 

The basic idea of IICA is: the first stage is the same as IC, 

and the solution process of the second stage is as follows 

Algorithm 1: 

Algorithm 1: IICA 

1) If mod 1y p     = −   , then output log
2

g

N
y = , go to 7). 

2) If mod 1y p     =   , then output logg y N= , go to 7). 

3) Decompose 
1

j

k
w

j

j

y q

=

= ∏  and save 1 2 kq q q< < <⋯ . 

4) If y  is smooth, output 

1 1 2 2log ( log log log ) modg g g k g ky w q w q w q N= + + +⋯
, go to 7). 

5) The congruence transformation is applied to the primes 

in y  greater than tp  until all the primes fall into the 

set M . 

6) Compute the discrete logarithm of y  and output 

log (log ( mod ) log ) modg g gy U P V N= − , where U  

(the numerator in the congruence transformation) is the 

product of the prime powers of the elements in the set 

M  transforming y , and V  (the denominator in the 

congruence transformation) is the product of the prime 

powers of the elements in the set M  with the 

transformation y . 

7) The algorithm is complete. 

3. IICA Analysis and Optimization 

Definition 3: Let 
i

p
L

p

 
=  
 

, then L  is the strict right 

approximation of ip  with respect to p . 

IICA adopts i
i

p
p p

p

 
> 

 
 method, so IICA is also called 

strict right approximation method. 

Theorem 1: The number of successful or unsuccessful 

round of congruence transformation by IICA is at most 

2log p . 

Proof: Since 2 is the smallest prime in the smooth bound T , 

and all primes of the cyclic group 
*
pZ  are less than p , so any 

prime ip  less than p , if 
i

p

p

 
 
 

 is smooth, the prime of ip  

after a congruence transformation reduces at least one prime 

below / 2ip , and thus the number of successful or failed 

congruence transformations of a round of IICA is at most 

2log p . 
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Lemma 1 [11]: Suppose ( ),T pΨ  represents the number of 

smooth integers from T  to p , let logT pµ = , when 

p → ∞ , then ( ) ( ), exp 1 (1) ln lnT p p o pµ Ψ ≥ ⋅ − +  . 

Theorem 2: The probability of IICA smooth number is at 

least ( )exp 1 (1) ln lno pµ − +  . 

Proof: Since the smooth number in IC must be the smooth 

number in IICA, it can be seen from lemma 1 that the 

probability of IC algorithm being the smooth number is 

( , ) /T p pΨ , namely ( )exp 1 (1) ln lno pµ − +  . In addition, 

in the case of successful IICA congruence transformation, 

there are non-smooth numbers that can all fall into T  for 

2log p  transformations at most, so the probability of IICA 

smooth number is at least ( )exp 1 (1) ln lno pµ − +  . 

Theorem 3: The premise that IICA can congruence 

transformation every time is that 
i

p

p

 
 
 

 is smooth, where 

i t> . 

Proof: Suppose 
i

p

p

 
 
 

 is non-smooth, where i t> , then 

there are discrete logarithms of unknown prime factors in the 

denominator of congruence transformation. These unknown 

prime factors cannot be eliminated at the end of congruence 

transformation, and IICA fails. Therefore, the premise that 

IICA can congruence transformation every time is that 
i

p

p

 
 
 

 

is smooth. 

Theorem 4: If 
p

x p
T

< <  is a prime number, the prime 

factor of x  must decrease after a congruence transformation. 

Proof: Because 
p

x p
T

< < , so 1
p

T
x

< < , since T  is a 

smooth bound, according to the rules of congruence 

transformation, there is p Tx pT< < , so 0 Tx p pT< − < , 

assuming x  after a congruence transformation of the prime 

factor does not decrease, means Tx p x− > , that is
1

p
x

T
>

−
. 

1

p
x

T
>

−
is in contradiction with the assumption 

p
x p

T
< < , 

so the conclusion is valid. 

According to Theorem 4, there are ( ) ( / )p p Tπ π−  prime 

numbers that must decline after the first congruence 

transformation, where ( )xπ  represents the number of 

primes that do not exceed the real number x. Prime numbers 

from T  to 
p

T
, in the implementation of IICA's strict right 

approximation, because 
i

p

p

 
 
 

 is not necessarily smooth, so 

the congruence transformation of IICA may not exist. If the 

congruence transformation does not exist, it needs to perform 

the second and third stage operations similar to IC, which is 

the reason why IICA algorithm is still a probabilistic 

algorithm. 

IICA does not give a method for dealing with prime factors 

when congruence transformations do not exist. In order to 

ensure that IICA effectively ends or stops invalid congruences 

transformation, the following algorithm 2 of optimization is 

carried out on IICA according to theorems 3 and 4 as well as 

the solution methods of the second and third stages of IC: 

Algorithm 2: Optimization of IICA 

1) Let 0 =yy , and m=0 . 

2) Let 0g mod pmy y=     , if mod 1y P     = −   , then 

output log
2

g

N
y m= − , go to 8). 

3) If mod 1y P     =   , then output logg y N m= − , go to 

8). 

4) Decompose 
1

j

k
w

j

j

y q

=

= ∏  and save 1 2 kq q q< < <⋯ . 

5) If y  is smooth, output 

1 1 2 2log ( log log log ) modg g g k g ky w q w q w q m N= + + + −⋯

, go to 8). 

6) Carry out congruence transformation for all prime 

factors in y  greater than tp  until all prime numbers 

fall into set M . If no congruence transformation exists 

for prime factors in the congruence transformation 

process, then select an integer of 0 m N< <  at random 

and go to 2), repeat 2)-6). 

7) Compute the discrete logarithm of y  and output 

log (log ( mod ) log ) modg g gy U P V N= − , where U  

(the numerator in the congruence transformation) is the 

product of the prime powers of the elements in the set 

M  transforming y , and V  (the denominator in the 

congruence transformation) is the product of the prime 

powers of the elements in the set M  with the 

transformation y . 

8) The algorithm is complete. 

4. Comparison of IICA and IC 

Lemma 2 [11]: Assuming a smooth bound 

( )( )exp 2 / 2 ln ln lnT p p =
 

, then the probability of IC 

algorithm failure is at most 1/2, and the expected running time 

is ( )exp 2 2 (1) ln ln lno p p +
 

. 

IICA is an improvement of IC algorithm, in essence, it is an 

improvement of a non-smooth prime factorization. IC 

algorithm directly uses subexponential time probability 

algorithm to solve the non-smooth integer, while IICA needs 

to use subexponential time probability algorithm to solve the 

non-smooth number that cannot be transformed to a smooth 

bound. Therefore, IICA still uses the smooth bound assumed 

by Lemma 2. 

IC and IICA have the same operation process in the first 
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stage, and IICA is only the optimization of the second and 

third stages of IC, so IC and IICA have the same time 

complexity. The time complexity of the first stage is 

( )2 (1)

ln ln ln
o

O p p
+ 

 
 

, and the time complexity of the 

second and third stages is ( )3/2 (1)

ln ln ln
o

O p p
+ 

 
 

 

[12-14]. 

According to theorem 2, the probability of success of IICA 

is greater than that of IC algorithm. 

According to Theorem 4, prime numbers from tp  to 
p

T
 

and numbers containing prime factors from tp  to 
p

T
, their 

discrete logarithms are solved by IICA algorithm, with a very 

low probability of success. 

5. Algorithm Verification 

Let 14087p =  and 5g =  be a generator of *
PZ  order 

14086N = , { }2,3,5,7,11,13M = , calculate the discrete 

logarithm of 4909y = . 

Assume that the discrete logarithms of prime numbers 2, 3, 

7, 11 and 13 in smooth bound M  have been obtained by IC 

algorithm, that is log 2 3028g = , log 3 5018g = ,

log 7 8542g = , log 11 5446g = , log 13 4729g = . The 

calculation process of logg y  is as follows: 

Since 4909 is prime, and
14087

3
4909

   =  
  

 is a smooth 

number, a congruence transformation of y  is 
74909 3 640 2 5

mod mod mod
3 3 3

p p p
⋅ ⋅

⇒ = = . 

Now all prime numbers fall into the smooth bound, so 

log 4909 7log 2 log 5 log 3 2093g g g g= + − = . 

Verify 2093 mod 4909g p = , which is consistent with the 

algorithm analysis. The congruence transformation only goes 

through one congruence transformation. 

Using the same parameters as above, the discrete logarithm 

of 5872y =  is calculated. The calculation process is as 

follows: 

Decompose 45872 2 367y = = ⋅ . Since 367 is prime and 

cannot be decomposed again, 5872 is a non-smooth integer. 

Since 
14087

31
367

r
 = = 
 

 is a non-smooth integer, an integer 

m  greater than 0 needs to be randomly selected. If 3m =  is 

randomly selected, then 
9 25872 5 mod14087 1476 2 269y = ⋅ = = ⋅ . 

Since 
14087

53
269

r
 = = 
 

 is a non-smooth integer, the 

solution fails and m needs to be selected again. Suppose that 

9m =  is selected by luck, then 
95872 5 mod14087 2081y = ⋅ = . 

Since 2081 is prime and 
14087

7
2081

r
  = =  
  

 is smooth, 

then the first congruence transformation of y  is 
52081 7 480 2 3 5

mod14087 mod14087 mod14087
7 7 7

⋅ ⋅ ⋅
⇒ ⇒ = . 

Now all the prime numbers fall into the smooth bound, so 

log 5872 5log 2 log 3 log 5 log 7 9 11608g g g g g= + + − − = . 

Verify 11608 mod 5872g p = , the discrete logarithm of 

5872 is successfully solved through a congruence 

transformation under the circumstance that 9m =  is 

randomly selected, which is consistent with the analysis of the 

algorithm. 

The number of congruence transformation for solving the 

two discrete logarithms given by this example does not exceed 

2log 14087 . The first example does not choose m  and is 

successfully solved by one congruence transformation; the 

second example chooses m  twice. After selecting 9, it is 

successfully solved by one congruence transformation, which 

verifies the correctness of theorem 1. In this example, the 

smooth bound of { }2,3,5,7,11,13M =  is 16, according to 

the smooth bound ( ) ( )exp 2 / 2 ln ln ln 26.65T p p = =
 

 

assumed by Lemma 2, and then 23 should also be included in 

the smooth bound. In fact, the larger the smooth bound, the 

more smooth number, and the greater the probability of 

success for IICA and IC. 

It is found that for any prime number from 528 to 14086, the 

maximum prime factor decreases after the first congruence 

transformation, while for any prime number from 26 to 528, 

some have no smooth numbers to multiply, such as 367, which 

verifies the correctness of theorem 4. That is to say, given this 

example, the discrete logarithm of the primes from 17 to 828 

are solved using IICA as well as IC. The solution of discrete 

logarithm of 367 confirms this. 

The above two examples were used in IICA to solve the 

discrete logarithm of the non-smooth number in polynomial 

time. However, IC can only be solved using probabilistic 

algorithm, which verifies that the probability of success of 

IICA algorithm is greater than that of IC. 

6. Conclusion 

The solution of discrete logarithm in prime finite field has 

an important impact on the security of cryptosystem based on 

prime finite field. Therefore, the solution of discrete logarithm 

in prime finite field is a hot topic in computer and mathematics 

circles. IC algorithm has few restrictions on group structure, 

and has sub-exponential running time, so it is favored by 

people. However, IC algorithm is a probabilistic algorithm, 

and there are a lot of trial problems. IICA is an improved 

algorithm of IC. IICA uses approximation method instead of 
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trial method to achieve better results. The essence of IICA 

algorithm is analyzed, the correlation analysis model is 

established, and the correctness of the model is verified by an 

example. 

In the future, the safety impact of IICA on elliptic curves 

will be further studied. 
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