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Abstract: In this paper, fear effect and stage structure are introduced in a free boundary problem of a prey-predator model. 

This system simulates the spread of an invasive or newly introduced predator species, taking into account the presence of both 

immature and mature stages of prey that are affected by fear of the predator. The predator's predation behavior on adult prey 

induces fear in the prey, which in turn causes the prey to seek out safer habitats. While this short-term survival strategy may be 

effective, it ultimately leads to a decrease in the prey's long-term survival fitness, including reduced reproductive ability. 

Consequently, the overall population of prey is expected to decline over the long term. The existence and uniqueness of the 

solution is given, and the comparison principle is used to discuss the long-term behavior of the solution by constructing a 

sequence of upper and lower solutions. We obtain a spreading–vanishing dichotomy for this model, in other words, when the 

predator can only spread in a limited area, the predator will eventually become extinct, the population density of the two stages 

of prays will tend to two positive constants, and when the predator can spread to infinity, the predator ultimately survives, and 

their population density, defined as (u, v, w) will eventually tend to (u
*
, v

*
, w

*
) which we defined blow. 
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1. Introduction 

In recent years, the introduction of free boundary into 

prey-predator models [1-3] can better describe the dynamics of 

invading predator and prey, and is helpful to predict and 

prevent the invading predator. Due to the increasingly in-depth 

discussion of prey-predator models, more and more elements 

have been introduced into the model. By introducing the fear 

effect [4-7], it is concluded that the fear of the prey for the 

predator changes its growth and development rules, which 

becomes the main reason for the extinction of the prey. The 

species itself has multiple stages, and the predatory structure at 

different stages may not be the same [8-10]. 

This paper investigates a prey-predator model with a fear 

effect and stage structure by studying its free boundary 

problem. By combining free boundary, fear effect, and stage 

structure, we provide a comprehensive analysis of this model.
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where ,u v are the population densities of immature and mature 

prey, respectively, w is the density of the predator, b  is the 

birth rate of the immature prey, 1/ (1 )kw+  is the fear factor, 

1 2 3, ,r r r are mortality rates, α  is the probability of the prey 

transforming from immature to mature, ,λ η
 
are adult prey 

and predator environmental factors respectively, β is the 

predatory coefficient between two species, ( ) ( ),x g t x h t= =  

are the invading front and evolves according to the Stefan 

condition, and the initial functions satisfy 

2
0 0 0 0 0 0 00 0 0 00, ( ), 0, 0, , ([ , ]), 0, ( , ), ( ) 0.b pC R x R w W h h wu v u v x h h w h∈ > > ∈ ∈ − > ∈ − ± =

 

2. Existence and Uniqueness 

Theorem 2.1 establishes the existence and uniqueness of a 

local solution, which can be extended to infinity and estimated 

from Theorem 2.2. The proofs of Theorem 2.1 and Theorem 

2.2 are similar to them of Theorem 1.1 in [11], Theorem 2.2 

and Theorem 3.1 in [12]. For convenience, we first give some 

symbols. 
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Theorem 2.2 For any given (0,1)α ∈ , the problem (1) exists an unique global solution ( , , , , )u v w g h  satisfying 
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3. Long Time Behavior 

This section is devoted to the analysis of the long-term behavior of the solution. For convenience, we first give some symbols. 
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Theorem 3.1 Suppose that ( ), , , ,u v w g h is the solution of problem (1). If h g∞ ∞− < ∞ , then 
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uniformly in any bounded subset of ( , )−∞ ∞ . 
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Proof. Theorem 2.2 implies that 10 w M< < for 0, ( ) ( )t g t x h t> < < . And w satisfies 
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We can easily obtain lim '( ) 0
t

h t
→∞

=  by using h∞ < ∞  and 

(2). According to Proposition 2 in [13] and Theorem 2.2, we 

can see that 
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For any 0,ε > there exists 0T > such that ( , )w t x ε<  for 

t T≥ . We consider Cauchy problem 
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Initial conditions are 0 0(0, ) ( ), (0, ) ( )u x u x v x u x= = . By 

applying the comparison principle, we can conclude that 

( , ) ( , ), ( , ) ( , )u t x u t x v t x v t x≥ ≥ . Note that Theorem 1.1 in [14], 

the solution of the above Cauchy problem satisfies 
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uniformly in any bounded subset of ( , )−∞ ∞ . Due to the 

arbitrariness of ε , we have 
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uniformly in any bounded subset of ( , )−∞ ∞ . 

Next, we are going to consider the ODE problem 
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Applying the comparison principle, we have

( , ) ( ), ( , ) ( )u t x u t v t x v t≤ ≤ for [0, ),t x R∈ ∞ ∈ , where 

( ( ), ( ))u t v t  is the solution of (4). According to theorem 2.1 in 

[15], it is found that the positive constant equilibrium of (4) is 

globally asymptotically stable, so 
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Combining (3) and (5), we can see that 
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uniformly in any bounded subset of ( , )−∞ ∞ . 

Theorem 3.2 Assume that ( ), , , ,u v w g h is the solution of 
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exists an unique positive equilibrium 
1w ε , which is globally 

asymptotically stable. According to the comparison principle, 

we easily see that ( , ) ( )w t x w t≤  for t T> , therefore 
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≤ . Due to the arbitrariness of ε , we have 
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for all x R∈ . 

Step 2 Note that (7), for any 0ε > , there exists 0T >  

such that 1( , )w t x w ε≤ +  for t T≥ . By virtue of a similar 

analysis of (3), we can conclude that 
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uniformly in any bounded subset of ( , )−∞ ∞ . Due to the arbitrariness of ε , we have 
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For any given small enough positive constants ,ε δ and large enough positive constant L , lδ  is defined by Proposition 8.1 

in [12] with 1d d= , 1 3= ( ) ,a v rβ ε− − θ η= . Note that (8), there exists 0T >  such that 1v v ε≥ −  for ( , ) [ , ) [ , ]t x T l lδ δ∈ ∞ × − . 

Therefore w  satisfies 

2
2 1 3     

                                                       

( ) , , [ , ],

( , ) 0     , .

t xxw d w v w w r w t T x l l

w t l t T

δ δ

λ

β ε η− ≥ − − − ≥ ∈ −

± ≥ ≥





 

Applying Proposition 8.1 in [11], we can see that 1 3liminf ( , ) [ ( ) ] /
t

w t x v rβ ε η
→∞

≥ − −  uniformly in [ , ]L L− . Due to the 

arbitrariness of L , ,ε δ , we have 

1 3
1 1liminf ( , ) ( ) :

t

v r
w t wx f w

β
η→∞

−
≥ = =  

uniformly in any bounded subset of ( , )−∞ ∞ . We can obtain 
2

1

1 ( )

k

k

θ β
ρ θ ηλ−

>−
+

on the conditions ρ θ> and 
2

1k
β ρ
ηλ

+ < , 

moreover 1 10 .w w< ≤  

Step 3 For any given large enough positive constant L  and small enough positive constant ε , there exists 0T >  such that 

1( , )w t x w ε≥ −  for ( , ) [ , ) [ , ]t x T L L∈ ∞ × − . Then ( , )u v  satisfies 

1 1
1

2
2 2 1

, , ( , ),                 

      

1 ( )

( )    , , ( , ),

t xx

t xx

bv
u d u r u u t T x L L

k w

v d v u v r v v w t T x L L

α
ε

α λ β ε

− ≤ − − ≥ ∈ −
+ −

− ≤ − −



− − ≥ ∈ −




  

and 1 1( , ) , ( , )u t L M v t L M± ≤ ± ≤  for t T≥ . We can obtain the desired result by following the same arguments as presented in 

Proposition 8.1 of [12]. 
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4. Conclusion 

This paper investigates a free boundary problem in a 

prey-predator stage-structured model with a fear effect. Our 

main results include the existence and uniqueness of solutions 

(Theorems 2.1-2.2), the spreading-vanishing dichotomy, and 
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the long-term behavior of solutions (Theorems 3.1-3.2). 

Biologically, incorporating stage structure and fear effects 

into the model increases its realism. Our results suggest that 

the introduction of stage structure and fear effect can provide 

more flexible control over the vanishing and spreading of 

species. To facilitate species spreading, one can increase the 

birth rate b of the immature or reduce the fear rate k. 

Although our work provides some insights into the 

prey-predator stage-structured model with fear effect, there 

are still some unresolved issues. For instance, it would be 

interesting to establish the sharp criteria for spreading and 

vanishing and to determine the spreading speed when 

spreading occurs. These problems are left for future work. 
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