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Abstract: Automated machine learning (AutoML) models is one of several machine learning algorithms that can be used to 

automate the solution of real-world problems. It automates the selection, composition, and parameterization processes of the 

machine learning models in particular. Machine learning could be more user-friendly when it is automated, and it often 

produces faster, and more accurate results than hand-coded machine learning methods. For more than ten years, AutoML for 

supervised learning has been the main focus of research under the discipline of artificial intelligence, and significant progress 

has been made theeafter; consider the usefulness of AutoML methods in the most popular machine learning toolkits, as well as 

the AutoML mechanisms in large scale platforms such as Microsoft Azure. This paper provides a methodical analysis of the 

AutoML workflow as well as the state-of-the-art effort in dealing with the challenges involving Combined Algorithm Selection 

and Hyperparameter Optimization by gathering information about AutoML from several published articles from different 

online repositories in order to delve more into the methods used in different domains and the level of accuracy obtained. 

Findings revealed that the next generation of machine learning and artificial intelligence research is focused on automating the 

other phases of the whole end-to-end machine learning pipeline, from data comprehension to model deployment. With 

significantly better deep learning algorithms and big datasets, AutoML is predicted to be able to handle most of the data 

cleaning process in the future. AutoML will evolve into a highly human-competitive system that will change the way we think 

about data research. 
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1. Introduction 

Machine learning (ML) is becoming increasingly popular 

in a variety of fields for the creation of machine learning 

models, the requirement for fast data extraction, model 

training, model assessment, and model deployment (pipeline) 

has never been more critical [1]. Many corporate and 

governmental organizations have realized that data analysis is 

a valuable tool for acquiring understandings on exactly how 

to enhance their corporate model, making decision-, and even 

goods [2]. The technique of applying ML models to real-

world issues via automation is known as automated machine 

learning (AutoML) [3]. AutoML automates the selection, 

construction, and parameterization of ML models. ML 

algorithms that are automated are more user-friendly and 

typically provide faster, more accurate results than hand-

coded algorithms [3]. 

ML has also advanced significantly. For example, in the 

game of GO, AlphaGO [4] defeated the human champion. 

According to He, K. et al. [5] ResNet outperformed humans 
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in image recognition, and Microsoft's voice system came 

close to matching human speech transcription [6]. 

AutoML using classification techniques under supervised 

learning has remained the main crux of research for over 10 

years and significant progress has been made in terms of its 

utility [7]. The AutoML processes in huge scaled systems or 

platforms such as Microsoft Azure or H2O.ai and the 

AutoML systems in the extremely widespread machine 

learning toolkits [8-10]. Indeed, AutoML is a serious issue in 

ML today, with a lot of interest from industry, academia, and 

even the general public. 

In this study, we give a methodical assessment of the 

AutoML workflow as well as a state of the art (SOTA) effort 

in dealing with the problems of Combined Algorithm 

Selection and Hyperparameter Optimization (CASH). The 

study highlights the remaining steps of the whole end-to-end 

ML pipeline from data pre-modeling all the way through to 

post modeling. 

1.1. AutoML Workflow 

AutoML is a platform or open-source library that 

automates each stage in the ML process, from handling a raw 

dataset to deploying a realistic ML model. In classical ML, 

models are built by hand, and each stage of the process must 

be handled separately [3]. 

 

Figure 1. AutoML Workflow [11]. 

AutoML identifies and applies the best ML algorithm for a 

given task. It accomplishes this by employing two concepts: 

a. Neural architecture search, which aids in the creation of 

neural networks by automating the process. This makes it 

easier for AutoML models to find new architectures for 

situations that require them. 

b. Transfer learning, in which previously trained models 

apply their knowledge to fresh data sets. AutoML can use 

transfer learning to apply existing structures to new problems. 

Users with only a rudimentary understanding of ML and 

Deep Learning (DL), Artificial Intelligence (AI) experts can 

interact with the models using a programming language such 

as Python. 

Neural Architecture Search (NAS) 

In recent years, DL has made tremendous progress in a 

variety of applications, including speech recognition, 

machine translation and image recognition. Deep 

convolutional neural networks (DCNN) are a critical 

component of this progress [12]. The NAS is a tool for 

computerizing architectural planning, is the next step of in 

the automation of machine learning. NAS approaches have 

already surpassed manually created systems on various tasks, 

including image classification, object recognition, and 

semantic segmentation [13]. 

In Feurer & Hutter [21], NAS is a subset of AutoML 

that has a lot in common with hyperparameter 

optimization and meta-learning. The three aspects by 

which we characterize NAS approaches are the search 

space, search tactic, and routine assessment approach 

(Elsken et al., 2019). 

 

Figure 2. NAS Techniques [12]. 

A search technique chooses a design “A” from a 

prearranged search space “A” in Figure 2. The architecture is 

given to a performance evaluation approach, which returns 

the projected performance of “A” to the search approach. 

1.1.1. Searching for Space 

The search space defines which architectural 

representations are theoretically viable. Understanding the 

characteristics of well-suited designs can help to restrict the 
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search area and streamline the process. However, this 

presents a human bias, which may obstruct the discovery of 

novel architectural building blocks that go away from human 

comprehension. 

1.1.2. Search Methodology 

The search strategy outlines exactly how to look for the 

search space for information (which is regularly 

exponentially huge or even boundless). 

It addresses the classic exploration-exploitation trade-off, 

in which it is desirable to quickly identify high-performing 

designs while avoiding early convergence to a region of low-

performing structures. 

1.1.3. Performance Estimation Strategy 

The purpose of NAS is normally to discover designs that 

work effectively with data that has never been seen before. 

The most straightforward way is to train and validate the 

architecture on data, but this is computationally expensive 

and restricts the number of architectures that may be 

investigated. 

The easiest choice is to achieve a basic training and 

confirmation of the architecture on data, but this is 

computationally costly and reduces the number of designs 

that can be investigated. Performance Evaluation belongs to 

the process of valuing this operation: the simplest option is to 

perform a standard training and validation of the architecture 

on data, but this is computationally expensive and limits the 

number of designs that can be investigated. As a result, a lot 

of recent research has been devoted to figuring out how to 

reduce the cost of these performance estimations. 

1.2. Transfer Learning 

In ML, transfer learning (TL) refers to the reuse of a 

formerly trained model on a new-found problem. In transfer 

learning, a computer leverages information from a previous 

assignment to improve generalization about a new task. For 

example, while training a classifier to predict whether a picture 

contains food, you may use the knowledge gathered during 

training to recognize beverages [14]. It is therefore possible to 

use what was learnt in one activity to help us generalize on 

what we have learnt in another. The weights learned by a 

network at "task A" are transferred to a new "task B.". 

 

Figure 3. Different Learning Processes between Traditional Machine Learning and Transfer Learning [15]. 

Table 1. Traditional Machine Learning Vs Various Transfer Learning Settings [15]. 

Learning Settings Source and Target Domain Source and Target Tasks 

Traditional Machine Learning The same The same 

Transfer Learning 
Inductive Transfer Learning 

The same Different but related 

Different but related Different but related 

Transductive Transfer Learning Different but related The same 

Table 2. Different Settings of Transfer Learning [15]. 

Transfer Learning Settings Related Areas Source Domain Labels Target Domain Labels Tasks 

Inductive Transfer Learning 
Multi-task Learning Available Available Regression Classification 

Self-taught Learning Unavailable Available Regression Classification 

Transductive Transfer Learning 
Domain Adaptation, Sample 

Selection Bias, Co-variate Shift 
Available Unavailable Regression Classification 

Unsupervised Transfer 

Learning 
 Unavailable Unavailable 

Clustering, Dimensionality 

Reduction 

2. Related Works 

This section reviewed some related works done by different research scholars under Automated Machine Learning, domain, 

methodology, packages, and programming languages implemented. 
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Table 3. Methodical review on related works. 

S/N Domain Methods Findings 

1 
Automated Feature Generation 

and Selection [16] 

AutoLearn 

Regression based feature 

learning 

Python 

Their experimental evaluation of the features learned through our model on 

18 UC Irvine and 7 Gene expression datasets across different domains shows 

that the features learned through our model can improve overall prediction 

accuracy by 13.28 percent compared to original feature space and 5.87 

percent compared to other top performing models, across 8 different 

classifiers without using machine learning of any domain knowledge. 

2 
Automated ML for predictive 

quality in production [17] 

Python, AutoML 

Preprocessing + Auto-sklearn 

AutoML still necessitates programming skills and is surpassed by manual 

implementation, which has an F1 value of 73 percent compared to AutoML's 

F1 value of 48 percent. 

3 Pipeline Selection [18] 
TensorOboe 

Python 

When compared to Decision tree, Extra tree, Gradient boosting, Gaussian 

naive Bayes, KNN, Logistic regression, Multilayer perceptron, Perceptron, 

Random Forest Linear, and SVM for runtime prediction accuracy on 

OpenML datasets within a factor of 2 and within a factor of 4, Adaboost has a 

better accuracy of 73.6 percent and 86.9%, respectively. 

4 

A distributed, collaborative, and 

scalable system for automated 

ML [19] 

ATM: Auto Tuned Model 

Python 

They demonstrated the usefulness of ATM on 420 datasets from OpenML and 

train over 3 million classifiers. Their initial results show ATM can beat 

human-generated solutions for 30% of the datasets, and can do so in 1/100th 

of the time. 

5 Neural AutoML for DL [20] LEAF 
LEAF is capable of outperforming current state-of-the-art AutoML systems 

as well as the best hand-crafted solutions. 

6 

Combined Selection and 

Hyperparameter Optimization of 

Classification Algorithms [9] 

AUTO-WEKA Waikato 

Environment for Knowledge 

Analysis (Weka) 

The performance of Auto-WEKA classification is frequently superior to that 

of traditional selection and hyperparameter optimization approaches. 

7 
Hyperparameter Optimization 

[21] 

Model-free methods 

Multi-fidelity Optimization 

Bayesian optimization 

 

8 DL pipeline [24] 

Neural Architecture Search 

(NAS) 

Hyperparameter optimization 

(HPO) 

Python 

Based on the PTB dataset and state-of-the-art models. The better the 

performance, the smaller the perplexity. It reveals that the auto NAS model 

has a difficulty of 64, but the human experts' model has a perplexity of 54.55. 

9 

Tree-based Pipeline Optimization 

Tool for Automating Data 

Science [11] 

Tree-based Pipeline 

Optimization Tool (TPOT) 

Python 

With larger data sets, their trials attain a categorization accuracy of 80%. 

10 
Automated ML Techniques for 

Data Streams [22] 

meta-learning technique for 

online algorithm selection 

based on meta- feature 

extraction 

The meta-learning strategy used by a heterogeneous ensemble of online 

learners produced better results than some of the online learners working 

alone, but it was worse than the online ensembles using ADMIN. 

11 
Automated ML via hierarchical 

planning [23] 
ML-plan 

According to their research, ML-Plan implementation is very competitive and 

frequently beats state-of-the-art techniques such as Auto-WEKA, auto-

sklearn, and TPOT. 

12 
TL in Collaborative Filtering for 

Sparsity Reduction [25] 

matrix-based transfer learning 

framework, coordinate system 

transfer or CST 

The effectiveness of coordinate system transfer, or CST, in alleviating the 

data sparsity problem in collaborative filtering. Several state-of-the-art 

methods for this problem are greatly outperformed by their strategy. 

13 
Auto-sklearn: Efficient and 

Robust AutoML [8] 
Python Auto-sklearn 

Their system won six of the ten phases of the first ChaLearn AutoML 

challenge, and a thorough study of over 100 different datasets reveals that it 

significantly beats the prior state of the art in AutoML. 

14 
Automating feature Engineering 

in relational databases [26] 

One Button Machine, or 

OneBM for short 

OneBM was validated in Kaggle contests, where it performed as well as the 

top 16 percent to 24 percent of data scientists in three competitions. In a 

Kaggle Competition, OneBM outperformed the state-of-the-art system in 

terms of prediction accuracy and placing on the Kaggle scoreboard. 

15 
Automatic Feature Generation 

and Selection [27] 

ExploreKit 

Java 

They show that ExploreKit can achieve classification-error reduction of 20% 

overall. 

16 
Learning Feature Engineering for 

Classification [28] 

Learning Feature 

Engineering (LFE) 

Their empirical findings reveal that LFE beats other feature engineering 

approaches for the vast majority of datasets (89 percent) while incurring a 

significantly lower computing cost. 

17 

Predictive Entropy 

Search for Multi-objective 

Bayesian Optimization with 

Constraints [29] 

Predictive Entropy Search for 

Multi-objective Bayesian 

Optimization with Constraints 

PESMOC is able to deliver better recommendations with a lesser number of 

assessments than a random search method, according to the results. 

18 

A Novel Bandit-Based Approach 

to Hyperparameter Optimization 

[30] 

Hyperband 

On a set of hyperparameter optimization problems, Hyperband used popular 

Bayesian optimization methods. On a range of deep-learning and kernel-

based learning issues, they find that Hyperband can deliver an order-of-

magnitude speedup over our competitor set. 

19 NAS [31] Simple regression 
They demonstrate that their performance prediction models and early 

stopping method are cutting-edge in terms of prediction accuracy and 
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S/N Domain Methods Findings 

speedup while still identifying the best model configurations. 

20 
Towards Automatically Tuned 

Neural Networks [32] 

Auto-Net 

Auto-sklearn 

Python 

The combination of Auto-Net and Auto-sklearn generally outperforms either 

alone, reporting the first results on winning competition datasets versus 

human specialists using automatically tuned neural networks. 

 

3. Combined Model Selection and 

Hyperparameter Optimization 

Problems 

Using a combination of the building blocks, such as 

feature engineering, Meta-learning, and Architectural search, 

the difficulty of coupled model selection and hyperparameter 

optimization can be overcome. Finally, a thorough solution 

identifies the ideal ML pipeline for raw (unprocessed) feature 

vectors in the briefest time for a given number of computer 

resources. It is noted that since 2015 a series of AutoML 

competitions has been organized every year [33]. A 

comprehensive pipeline consists of data cleaning, feature 

engineering (selection and creation), model selection, 

hyperparameter tuning, and finally creating an ensemble of 

the best trained models to achieve excellent performance on 

unseen test data. Optimizing the entire ML pipeline which is 

not certainly differentiable from start to finish is a tough task, 

and several methodologies have been employed to 

investigate various options [2]. 

Hyperparameter Optimization 

Bayesian optimization, which is a vital stage in tackling 

the entire CASH issue, is the most notable example of 

comparable methodologies. The goal is to develop a model 

that can forecast loss and variation for each input. After each 

optimization phase, the model (or present belief) is updated 

using a posteriori knowledge, hence the name Bayesian [2]. 

To pick where to sample the next real loss, a sampling 

function is built that trades off areas of low expected loss 

(exploitation) with regions of high variation (exploration). 

Gaussian Processes are commonly used in Bayesian 

optimization; however, Random Forests have been used to 

model the loss surface of the hyperparameters as a Gaussian 

distribution in Sequential Model-based optimization for 

general Algorithm Configuration (SMAC) or the Tree-

structured [34]. 

Successive Halving [35], and its built-on Hyperband [30] 

are model-free approaches that utilize real-time optimization 

progress to narrow down a set of competing hyperparameter 

configurations throughout the course of a whole optimization 

cycle, perhaps with multiple restarts. Evolutionary Strategies 

are a small variant on this, since they allow for perturbations 

of particular configurations during training. Multiple 

iterations of the optimizer can be unrolled in the particular 

situation when both the optimize and the optimizer are 

differentiable, and an update for the hyperparameters can be 

calculated using gradient descent and backpropagation [36]. 

Pipeline Optimization 

Various perspectives on the topic are used to develop 

entire ML pipelines, as well as feature prepossessing, 

hyperparameter tweaking, model selection, and ensemble 

formation. Various pipeline optimization strategies were 

inspired by Bayesian optimization, genetic programming, and 

binary optimization. 

Auto-sklearn uses meta-learning, Bayesian optimization, 

and ensemble building to solve the CASH issue. It begins by 

extracting meta-features from a new dataset, such as job type 

(classification or regression), number of classes, feature 

vector dimensions, sample count, and so on. These meta-

features are used by auto-meta-learner sklearn's to start the 

optimization process based on previous experience with 

similar data sets (similar according to the Meta features). 

Following that, Bayesian optimization is used to optimize the 

preprocessing and model hyperparameters on a regular basis. 

Finally, an ensemble of models trained through iterative 

optimization is used to produce a robust classifier or 

regression model [2]. 

Tree-based Pipeline Optimization Tool (TPOT) is a genetic 

programming-based ML pipeline optimization technique. It 

seeks out the best pipeline for a given classification or 

regression task, considering feature processing, model, and 

hyperparameters. The feature processing module in TPOT 

works in conjunction with the feature selection and 

generation modules. The feature construction block does the 

kernel trick [2] or dimensionality reduction procedures. The 

pipelines are optimized via genetic programming: the method 

generates many tree-based pipelines at random at first. The 

top 20% of the population is then picked based on cross-

validation accuracy, and 5 descendants are generated from 

each by changing a point in the pipeline at random. The 

algorithm continues until a halting requirement is met. 

Finally, the ATM framework according to Swearingen, T. et 

al. [19] combines multi-armed bandit optimization and 

hybrid Bayesian optimization to discover the finest models. 

4. Conclusion 

Automated machine learning's purpose is to make it easier 

for users to create machine learning systems. AutoML is a 

well-recognized field with extensive applicability in the data 

science era, ranging from the optimization of fixed model 

hyperparameters through model type selection and whole 

model/pipeline development, as well as the autonomous 

construction of deep learning architectures. Significant 

progress was made in the early years, with very successful 

techniques readily available to those with only rudimentary 

ML skills. Similarly, strategies can make even machine 

learning experts' design jobs easier. In this research, we 

present a systematic investigation, AutoML approach, and 

state-of-the-art (SOTA) effort in dealing with the CASH 

Optimization problems. We can now employ AutoML 

techniques to solve problems that previously required a lot of 
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effort. AutoML has a lot to look forward to in the years ahead, 

given the progress made in the field of automated machine 

learning thus far. Approaches to addressing explainable 

AutoML models, AutoML in feature engineering, AutoML 

for non-tabular data, Large-scale AutoML, and AutoML 

Transfer Learning will all be exciting to learn about with 

respect to deep learning. 

5. Recommendations 

AutoML is expected to be able to handle most of the data 

cleaning processes in the future by employing considerably 

improved deep learning algorithms with massive datasets. 

AutoML will become a highly human-competitive system 

that will revolutionize data science as we know it. 
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