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Abstract: In this paper, the interactions among three species populations are considered. The system includes two mutuality 

preys and one predator. The second prey is harvested. While dependent on preys, the predator has an alternative food source 

also. The three species interaction can be described as a food chain in which two preys help each other but the predator attacks 

both the preys according to type I and II functional responses respectively. These population interactions are modeled 

mathematically using ordinary differential equations. It is shown that the solution of the model is both positive and bounded. 

The equilibrium points of the model are found and they are analyzed to identify a threshold that will guarantee the coexistence 

of the populations. Positive equilibrium points of the system are identified and their local and global stability analysis is carried 

out. Numerical simulation study of the model is conducted to support the results of the mathematical analysis. It is pointed out 

that as long as harvesting rate on the prey population is smaller than its intrinsic growth rate the coexistence of the system can 

be achieve. The results of the analysis and the discussion of the population dynamics is lucidly presented in the text of the 

paper. 
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1. Introduction 

The interaction created among some communities and the 

environment is known as ecosystems. The community is a 

collection of various populations in a given area those 

interact and influence one another for their survival. In an 

ecosystem, there will be an interrelation among the 

organisms in terms of their food chain. The food chain of the 

populations plays an important role in order to keep a balance 

in the ecosystem. If one of the foods in the chain is missing 

then the balanced dynamics of the ecosystem will be 

disturbed and the populations of preys or predators or both in 

the ecosystem will be affected. 

Mathematical model is the best way used to understand the 

dynamics and behavior of the ecological interactions among 

the species such as prey and predator populations. The simple 

model of Prey – predator interactions is proposed by Lotka 

and Volterra separately but currently the model is known as 

Lotka – Volterra model. 

The study of Prey – predator species interaction plays an 

important role in understanding the dynamical behavior of 

the populations in biological ecology. The selected ecological 

population systems are not always modeled using a linear 

system but well modeled through a nonlinear system of 

equations. 

A literature survey on the models of two preys and one 

predator is conducted as it is the topic of the present research 

and the review is presented here. The first simple 

mathematical model that represents the interaction of such 

three species system and determines their dynamical 

behavior has been considered and analyzed by [6]. 

However, these investigational results have been modified 
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by the authors [7]. Also, by including the environmental 

parameters and on applying algebraic manipulations the 

criterion for stability of the population sizes in ecology is 

created in [2]. 

Further, a functional response mechanism has been 

introduced. This mechanism expresses the prey density as a 

function of prey or predator or both. Here, the prey density is 

defined as the number of preys available per one predator per 

unit time [11]. 

Over years various features like coexistence, stability, 

persistence and extinction as well as predator switching 

between prey population species have attracted the attention 

of the researchers. Including the foregoing features and 

applying Holling type-I functional response a two preys – 

one predator system was addressed by [5]. 

The existence and global stability of positive periodic 

solutions of these three species models with the inclusion of 

Holling type II functional response are studied. Based on the 

environmental parameters, Holling type II functional 

response and without the team help the conditions for local as 

well as global stability are established by [14]. 

The complexities in the dynamical behavior of two preys 

and one predator system following Holling type II functional 

response with impulsive effect is discussed in [3, 4, 8-10]. 

It is quite obvious to believe that living in a team or in a 

group is very important for any population species. The 

major advantages of living are as follows: (i) Searching for 

food in a group will be more efficient than doing it alone (ii) 

Higher probability for predators to attack preys and (iii) 

Preys defend themselves from their enemies by team. 

On the other hand, the local and global stability analysis of 

these models with the inclusion of group help and Holling 

type I functional response is carried out in [1]. Here, the three 

species food web model consisting of two teams of preys 

interacting with one team of predator is developed based on 

the assumptions (i) during predation the members of both 

groups of preys will help each other (ii) the predators are 

benefitted from predation according to Holling type II 

functional response (iii) Prey teams help each other for the 

prevention of predator’s attack which will increase the 

growth rate of prey species [13]. 

An interaction among two mutualistic preys and predator 

population has been considered by [12]. Here, the 

populations were interacts into two areas: free area and 

refuge area. In free area, only the second prey and predator 

population species exist and interact while in a refuge area, 

only the first prey population species exists. In a refuge area, 

the predator population species cannot enter and attack the 

prey species. However, in a refuge area the two preys can 

interact and help each other. In addition, in this model, 

proportional harvesting function and functional responses are 

considered among these populations interactions. Based on 

the unique and positive equilibrium points, local and global 

stability of the system has been determined analytically and 

numerically. 

In the present paper, the authors have considered 

interactions among three populations: two preys and one 

predator. The two prey populations are assumed to help each 

other. Further, the predator population can attack both the 

prey populations and gain benefit according to the types I and 

II functional responses. Additionally, application of 

proportional harvesting function to one of the prey species is 

also considered. 

2. Methodology 

2.1. Assumptions of the Model 

In order to construct a mathematical model, the following 

assumptions have been made in the present study: 

(i) All the three species populations grow following 

logistic function. 

(ii) There is a mutuality interaction between the first and 

second prey species. 

(iii) The first prey population helps the second according 

to type I functional response while the second helps 

the first according to type II functional response. 

(iv) The predator population attacks the first prey 

population and gets benefit according to type I 

functional response. 

(v) The predator population attacks the second prey 

population and gets benefit according to type II 

functional responses. 

(vi) The predator population has alternative food sources. 

That is, it doesn’t fully depend on any of the prey 

populations for survival. 

(vii) The second prey population is harvested proportional 

to its density. 

The interactions among the three population species of the 

present model are visualized through a flow diagram given in 

Figure 1. 

 

Figure 1. Flow diagram of three species interactions. 

In Figure 1 	�� , ��  and 	��	 represent two preys 	 and a 

predator respectively. The positive or negative signs indicate 

that the populations are benefited or affected. 

2.2. Variables and Parameters 

The variables used in mathematically formulating the 

model assumptions are described here under: 

(i) �����  is the density of the first prey population at 

time	� 
(ii) ����� is the density of the second prey population at 
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time	� 
(iii) �����  is the density of the predator population at 

time	� 
It is true that	�����, ����� and ����� are time – dependent 

functions. However, for the simplicity these are represented 

as 		��, ��	and 		��  in the text of this paper. Similarly, the 

parameters used in mathematically formulating the model 

assumptions are described here under: 

(i) The intrinsic growth rates of the first and second 

preys and the predator populations respectively are	
� , 
for	� = 	1, 2, 3. 

(ii) The positive impact on the first prey by the second 

and vice versa are ���	and ��� respectively. 

(iii) The helping rate by the second prey to the first is	ℎ. 
(iv) The parameters �� 	 for � = 	1, 2, 3	 are the carrying 

capacities of three population species respectively. 

(v) The parameters �� and 	��	are the catchability and the 

effort applied on the second prey population i.e., ���� 

is the harvesting rate of the second prey population. 

(vi) The parameter ���	 is the negative impact on the 

second prey population due to the predator 

population. 

(vii) The parameter ���	 is the positive impact to the 

predator population due to the second prey 

population. 

(viii)The parameter ��� is the attacking rate of the predator 

population on the first prey population. 

(ix) The parameter ���  is the benefiting rate of the 

predator population from the first prey population. 

2.3. Mathematical Formulation of the Model 

The mathematical model of three population species 

interaction with the inclusion of functional responses and 

harvesting function is formulated and is expressed as a 

system of three ordinary differential equations as given in (1) 

to (3). 

����� = r�N� �1 − ��!�" + $ %�&���&�'%�&(��) − c��N�N�	     (1) 

��&�� = r�N� �1 − �&!&" + a��N�N� 	− q�E�N� 	− 	 $ .&/�&�/�'.&/(�&)	    (2) 

01/02 = 
��� �1 − 1/3/" + $ 4/&1/1&�'4&/51&) + �������    (3) 

2.4. Normalization of the Model Equations 

It is well accepted that the normalization of model 

equations is a very important aspect in dealing with 

biological models whenever the number of parameters used 

in the original model is very large. Therefore, normalization 

of a model reduces the number of parameters. Further, it 

helps to focus on useful parameters and makes the 

mathematical analyses simpler. 

In order to obtain the normalized or reduced form of the 

system of equations (1) to (3) the transformation variables 

employed are 		�� = ��6, �� = ��7, �� = ��8, � = �1 
�⁄ �: . 

Thus, the original system of equations (1) to (3) can be 

expressed in the normalized form as (4) to (6). 

�;�<	 = x�1 − x� + $α�&;>�'δ�;) − β��zx           (4) 

�>�<	 = δ�y�1 − y� + α��yx − δ�y −	$δ&/>A�'δ>)           (5) 

�A�< = γ�z�1 − z� + β��xz + $δ/&A>�'δ>)	          (6) 

In the scaled equations �4� 	−	�6� the notations used 

includes	D�� = ������ 
�⁄ �, 	E� = ���ℎ��, E� =�
� 
�⁄ �, D�� =	 ������ 
�⁄ �, E� = ����� 
�⁄ �, E�� =������ 
�⁄ �, E = ���ℎ��, F� = �
� 
�⁄ �, E�� =������ 
�⁄ �, G�� = ���� 
�⁄ �, G�� = ���� 
�⁄ �. 
2.5. Positivity of the Solution 

Proposition 1.1 All solutions 6�:�, 7�:�	 and 8�:�	of the 

model equations (4) to (6) together with the positive initial 

conditions �6H, 7H, 8H�	are positive for all : ≥ 0  in the 

given region. 

Proof: Positivity of	6�:�: To show positivity of 6�:�	it is 

appropriate to begin with equation (4) given by	�K6 K:⁄ � =6L1 − 6 + MD��7 �1 + E�6�⁄ N − G��8O. Equivalently, it can be 

rearranged as 	�K6 6⁄ � = L1 − 6 + MD��7 �1 + E�6�⁄ N −G��8O	K:. In this differential equation, the variables 6, 7 and 8 are the functions of	:. Thus, by applying integration and 

performing some algebraic manipulations, the solution of this 

differential equation can be obtained 

as	6�:� = 6H 	exp R S1 − x�T� +	 UD��7�T� V1 + E�6�T�W⁄ X 	−YH	G��	8�T�Z KT. Here, the constant 6H	denotes the density of the 

initial population of the first prey at time 	: = 0  and is a 

positive quantity by assumption. Furthermore, for any 

exponent value the exponential function is always positive. 

Therefore, the solution of 6�:�	is a positive quantity for all	:. 
Positivity of	7�:�: Similarly, to show positivity of 7�:�	it is 

appropriate to begin with equation (5) given by	�K7 K:⁄ � =7LE� − E�7 + D��6 − E� − ME��8 �1 + E7�⁄ NO . Equivalently, 

it can be rearranged as	�K7 7⁄ � = LE� − E�7 + D��6 − E� −ME��8 �1 + E7�⁄ NO	K: . In this differential equation, the 

variables 6, 7 and 8 are the functions of	:. Thus, by applying 

integration and performing some algebraic manipulations, the 

solution of this differential equation can be obtained 

as 	7�:� = 7H[6\ R LE� − E�7�T� + D��6�T� − E� −YHME��8�T� �1 + E7�T��⁄ NO KT. 
Here, the constant 7H	denotes the density of the initial 

population of the second prey at time	: = 0 and is a positive 

quantity by assumption. Furthermore, for any exponent value 

the exponential function is always positive. Therefore, the 

solution of 7�:�	is a positive quantity for all	:. 
Positivity of	8�:�: Similarly, to show positivity of 8	�:�	it 

is appropriate to begin with equation (6) given 

by 	�K8 K:⁄ � 	= 8LF� − F�8	 + G��6 + ME��7 �1 + E7�⁄ NO . 

Equivalently, it can be rearranged as 	�K8 8⁄ � 	=LF� − F�8	 + G��6 + ME��7 �1 + E7�⁄ NO	K:. In this differential 

equation, the variables 6 , 7  and 8  are the functions of 	: . 

Thus, by applying integration and performing some algebraic 

manipulations, the solution of this differential equation can 

be obtained as 	8�:� = 8H	[6\ R SF� − F�8�T� 	+ G��6�T� +YHUE��7�T� V1 + E7�T�W⁄ XZ KT.  Here, the constant 8H	 denotes 
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the density of the initial population of the predator at 

time 	: = 0	 and is a positive quantity by assumption. 

Furthermore, for any exponent value the exponential function 

is always positive. Therefore, the solution of 8�:�	 is a 

positive quantity for all	:. 
Thus, from the above three verifications it is very clear 

that the solutions 6�:�, 7�:�	and 8�:�	of the model equations 

(4) – (6) are positive quantities for all	: ≥ 0 in the region. 

2.6. Boundedness of the Solution 

Theorem 1.1 All solutions 6�:�, 7�:�	 and 8�:�  of the 

model equations (4) – (6) together with the initial 

conditions	�6H, 7H , 8H�	are bounded within the region	ℜ =L	�6, 7, 8�:	0 ≤ 6�:� ≤ 1, 0 ≤ 7�:� ≤M1 + �D�� E�⁄ �N, 0 ≤ 8�:� ≤ �� F�⁄ �O. 
Proof: 

Boundedness of	6�:�: Consider the model equation (4) as �K6 K:⁄ � = 6�1 − 6� + MD��67 �1 + E�6�⁄ N − G��86  and 

rearrange as 	�K6 K:⁄ � = 6L�1 − 6� + MD��7 �1 + E�6�⁄ N −G��8O . Now, from the foregoing arrangement it can be 

observed that �K6 K:⁄ � ≤ 6�1 − 6� if the condition LG��8 −MD��7 �1 + E�6�⁄ NO > 0	 is satisfied. Now, the inequality 

relation 	�K6 K:⁄ � ≤ 6�1 − 6�	 is solved using variables 

separable method and after some algebraic manipulations the 

solution is expressed as 	6�:� ≤ 	 M1 ��[aY + 1�⁄ N. Here, �	is 

the integral constant. It is now easy to observe that as :	 →∞	the solution	M1 ��[aY + 1�⁄ N → 1. That is, 6�:� ≤ 1. Thus, 

it can be concluded that 6�:�	 is bonded if the 

condition	LG��8 − MD��7 �1 + E�6�⁄ NO > 0 is satisfied. 

Boundedness of	7�:�: Similarly, the equation (5) given by K7 K:⁄ = E�7�1 − 7� + D��76 − E�7 −	ME��87 �1 + E7�⁄ N	 can be rearranged as K7 K:⁄ =7LE��1 − 7� + D��6 − E� −	ME��8 �1 + E7�⁄ NO	 or 

equivalently 	K7 K:⁄ = 7SE��1 − 7� + D��6 − LE� +	ME��8 �1 + E7�⁄ NOZ . Now, since the expression LE� +	ME��8 �1 + E7�⁄ NO  is always a positive quantity it is 

appropriate to write as 	K7 K:⁄ ≤ 7	LE��1 − 7� + D��6O . 

However, since 6�:� ≤ 1	the foregoing inequality takes the 

form as	K7 K:⁄ ≤ 7	LE��1 − 7� + D��O 
Now, the inequality relation	K7 K:⁄ ≤ 7	LE��1 − 7� +D��O	is solved using variables separable method and after 

some algebraic manipulations the solution is expressed 

as	7�:� ≤ 	 U��E� + D��� V[aY�d&'e&�� + �E�W⁄ X. Here, �	is the 

integral constant. It is now easy to observe that as :	 → ∞	the 

solution	U��E� + D��� V[aY�d&'e&�� + �E�W⁄ X → 1 +�D�� E�⁄ �. That is, 7�:� ≤ 1 + e&�d& . Hence the solution 7�:�	is 

bounded. 

Boundedness of	8�:�: Here, equation (6) K8 K:⁄ =F�8�1 − 8� + G��68 + ME��87 �1 + E7�⁄ N	can be rearranged as 	K8 K:⁄ =M8�F� + F�E7 + G��6 + G��6E7 + E��7 − F�8 − F�8E7� �1 + E7�⁄ N
. Since, the term 	F�8E7 is a positive quantity and on 

discarding it the foregoing equation takes an inequality form 

as	K8 K:⁄ ≤M8�F� + F�E7 + G��6 + G��6E7 + E��7 − F�8� �1 + E7�⁄ N. 
Now, letting � = F� + F�E7 + G��6 + G��6E7 + E��7 and � = 1 + E7 the inequality is reduced to a simple form 

as	K8 K:⁄ ≤ M8�� − F�8� �⁄ N. Now, using the variables 

separable method and on integrating its solution is obtained 

as 8�:� ≤ 	 S	��� �⁄ �	 	U[ 	afY 4⁄ 	 + �F�� �⁄ �X⁄ 	Z. Thus, as time 

goes to infinite the solution curve 8�:� converges to �� F�⁄ �	i.e. 8�:� ≤ 	 �� F�⁄ �. Therefore, the solution of 8�:� is 

also bounded. 

2.7. Existence of Equilibrium Points and Their Analysis 

On imposing the conditions K6 K:⁄ = K7 K:⁄ = K8 K:⁄ =0 on the system of model equations (4) to (6) and solving the 

resultant equations eight equilibrium points of the model are 

obtained and listed as 

1. \� = �0, 0, 0�	All the population species are washed 

out 

2. \� = �1, 0, 0� Only the first prey species exists 

3. \� = �0, 1, 0� Only the second prey species exists 

4. \g = �0, 0, 1� Only the predator species exists 

5. \h = �6h, 7h, 0�	Both the prey species exist 

6. \i = �6i, 0, 8i�  The first prey and the predator 

species exist 

7. \j = �0, 7j , 8j� The second prey and the predator 

species exist 

8. \k = �6k, 7k, 8k�  All the three population species 

exist 

Here, in the equilibrium points the notations used are 	6h = E��7h − 1� D��⁄ , 7h =	M�6h − 1��1 + E�6h� D��⁄ N, 6i = MF��8i − 1� G��⁄ N, 8i =M�1 − 6i� G��⁄ N, 7j =LF��8j − 1� ME�� − EF��8j − 1�N⁄ O, 8j =LME��1 − 7j��1 + E7j�N E��⁄ O, 6k =	LM�F�8k − F���1 + E7k� − E��7kN G���1 + E7k�⁄ O, 7k =LM�G�� + 6k − 1��1 + E�6k� D��⁄ NO, 8k =LM�E� − E�7k + D��6k��1 + E7k�N E��⁄ O. 
But, since the equilibrium points must be positive 

quantities in order to be biologically meaningful the 

following conditions are imposed on various notations: (i) \h 

is positive if the two conditions 7h > 1  and 	6h > 1  are 

satisfied (ii) 	\i	is positive if the two conditions 	8i > 1 and 6i < 1 are satisfied (iii)	\j	is positive if the two conditions 8j > 1and 7j < 1 are satisfied (iv) Similarly,	\k	is positive if 

the two conditions 	G�� + 6k − 1 > 0	 and E� − E�7k +D��6k > 0 are satisfied. 

2.8. Local stability Behavior of the Equilibrium Points 

Here, the local stability analysis of the positive equilibrium 

points of the system (4) – (6) is conducted. In order to 

determine the local stability of the system the community 

matrix is to be constructed. For that purpose let K6 K:⁄ =m, K7 K:⁄ = n, K8 K:⁄ = ℎ	in (4) – (6) where m = 6�1 − 6� +MD��67 �1 + E�6�⁄ N − G��86; 	n = E�7�1 − 7� + D��76 −E�7 −	ME��87 �1 + E7�⁄ N; 	ℎ = F�8�1 − 8� + G��68 +ME��87 �1 + E7�⁄ N 
The community matrix p	 of the system of differential 

equations (4) – (6) can be constructed and expressed as 
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p =
q
rrr
stmt6 tm	t7 tm	t8tnt6 tnt7 tnt8tℎt6 tℎt7 tℎt8u

vvv
w

 

Here in	p, the matrix elements are computed as Mtm t6⁄ N =1 − 26 + MD��7 �1 + E�6�x⁄ N − G��8, tm t7⁄ =MD��6 �1 + E�6�⁄ N, tm t8⁄ = −G��6, tn t6⁄ =D��7, tn t7⁄ =E� − 2E�y + D��6 − E� − ME��8 �1 + E7��⁄ N, tn t8⁄ =E��7 �1 + E7�⁄ , tℎ t6⁄ = G��8, tℎ t7⁄ =ME��8 �1 + E7��⁄ N, tℎ t8⁄ 	= F� − 2F�8 + G��6 +ME��7 �1 + E7�⁄ N. 
Now, the local stability at each positive equilibrium point 

of the system is studied in the following separately. 

Locally unstable at 	\� = �0, 0, 0� : The community 

matrix	p�	at this equilibrium point reduces to the form as 

p� = y1 0 00 E�−E� 00 0 F�z. 

After solving the character equation |p� − |}| 	= 0 and on 

applying some algebraic manipulations the eigenvalues of 	p�	 at \�	 are obtained as 	|� = 1, |� = E�−E�	 and 	|� = F�. 
Here, it is clear that all eigenvalues are positive since E�−E� > 0, 	F� > 0	 indicating that the system at this 

equilibrium point is unstable. 

Locally unstable at	\� = �1, 0, 0�: At this equilibrium 

point, only the first prey population exists and the other two 

species are absent. The community matrix at this equilibrium 

point takes the form as 

p� = ~−1 D�� �1 + E��⁄ −G��0 E� + D�� − E� 00 0 F� + G��� 

On solving the characteristic equation |p� − |}| 	= 0	 of 

this matrix, the eigenvalues are obtained as		|� = −1, |� =E� + D�� − E�	 and 	|� = F� + G�� . Recall that all the 

parameters involved here E�, D��, E�, F�, G��  are positive 

quantities. Also, E� > E�	since the growth rate of the second 

prey is greater than its harvesting rate. Hence, it is very clear 

that both the second |�	 and the third eigenvalues |�	 are 

positives showing that the system at this equilibrium point \� 

is saddle point and thus is unstable in general. 

Locally unstable at	\� = �0, 1, 0�: At this equilibrium 

point, only the second prey population exists and other two 

species are absent. The community matrix p�  at this 

equilibrium point can be takes the form as 

p� = ~1 + D�� 0 0D�� −E� − E� 00 0 F� + ME�� �1 + E�⁄ N� 

On solving the characteristic equation |p� − |}| 	=

0	 eigenvalues of the matrix p�	 are obtained as 	|� =�1 + D���, |� = −�E� + E��, |� = LF� + ME�� �1 + E�⁄ NO. The 

parameters involved here D��, E�	E�, F�, E��, E	are all positive 

quantities. Hence, it is easy to observe that both the first and 

third eigenvalues are positives. Thus, the system at this 

equilibrium point \�	is unstable. 

Conditionally Locally stable at	\g = �0, 0, 1�: At this 

equilibrium point, only the predator population exists and 

other two preys are absent. The community matrix at this 

equilibrium point reduces to the form as 

pg = ~1 − G�� 0 00 E� − E� − E�� 0G�� E�� −F�� 

From the characteristic equation |pg − |}| 	= 0	eigenvalues 

of the matrix pg are obtained as	|� = 1 − G��, |� = E� − E� −E��, 	|� = −F� . All the parameters involved in these 

eigenvalues G��, E�, E�, E��, 	F�	are positive quantities. Here it 

is easy to observe that under the two conditions (i) E�� >E� − E�  and (ii) G�� > 1	 all the three eigenvalues are 

negatives i.e., |� < 0, |� < 0 and	|� < 0. 

Therefore, the model is locally asymptotically stable at the 

equilibrium point \g	 as long as the two conditions (i) E�� > E� − E� and (ii) G�� > 1 are satisfied. Otherwise, it is 

unstable. 

Locally unstable at	\h = �6h, 7h, 0�: This is a predator 

free equilibrium point. The community matrix at this 

equilibrium point takes the form as 

ph = ~��� ��� ������ ��� ���0 0 ���� 

In the matrix 	ph	the notations appear as elements represent 

the 

expressions 	��� = 1 − 26h + MD��7h �1 + E�6h�x⁄ N, ��� =MD��6h �1 + E�6h�⁄ N, ��� = −G��6h, ��� = D��7h, ��� =E� − 2E�7h + D��6h − E�, ��� = ME��7h �1 + E7h�⁄ N, ��� =F� + G��6h + ME��7h �1 + E7h�⁄ N . On solving the 

characteristics equation |ph − |}| 	= 0	 eigenvalues of the 

matrix 	ph	 are obtained as 	|�, |� = �1 2⁄ �U���� + ���� ±����� − ����� + 4������X, |� = ���.  Here, it is clear that 

the third eigenvalues |�	is positive since all the parameters 

involved in ���	 are positive quantities. Thus, it can be 

concluded that the system at the equilibrium point \h	 is 

unstable. 

Conditionally locally stable at 	\i = �6i, 0, 8i� : This 

equilibrium point describes the second prey free situation. 

The community matrix at this equilibrium point can be 

obtained as 

pi = ~��� ��� ���0 ��� 0��� ��� ���� 

Here in matrix 	pi	the elements are notations representing 
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the expressions as 		��� = 1 − 26i − G��8i, ��� =MD��6i �1 + E�6i�⁄ N, ��� = −G��6i, ��� = E� + D��6i −E� − E��8i, ��� = G��8i, ��� = E��8i, ��� = F� − 2F�8i +G��6i. 

Now, the characteristics equation |pi − |}| 	= 0	 of this 

matrix reduces to the form as ���� − |�M|� + |�−��� −���� + ������ + ������N = 0  and on solving gives the 

eigenvalues 	|� = ���, |�	 = �1 2⁄ �	U��� + ��� +����� − ����� − 4������X, |� = �1 2⁄ �	U��� + ��� −����� − ����� − 4������X. Here it can be observed that all 

the three eigenvalues are negative quantities if the following 

three conditions are satisfied by the parameters: 

(i)	E� + D��6i − E� − E��8i < 0 

(ii) U���� + ���� + ����� − ����� − 4������X < 0	 and 

(iii)	U���� + ���� − ����� − ����� − 4������X < 0. 

Thus, it can be concluded that the equilibrium point \i	is 

stable conditionally. 

Conditionally locally stable at	\j = �0, 7j, 8j�: it is the 

first prey free equilibrium point. The community matrix p	at 

this equilibrium point takes the form as 

pj = y��� 0 0��� ��� ������ ��� ���z 

Here in	p , the matrix elements represent the expressions 

as 	��� = 1 + D��7j − G��8j, ��� = D��7j , ��� = E� −2E�7j − E� − ME��8j �1 + E7j��⁄ N, ��� =ME��7j �1 + E7j�⁄ N, ��� = G��8j, 	��� =	ME��8j �1 + E7j��⁄ N, ��� = F� − 2F�8j +ME��7j �1 + E7j�⁄ N. 
Now, the characteristics equation |pj − |}| 	= 0	 of this 

matrix on solving gives the eigenvalues 	|� = ���, |�	 =�1 2⁄ �S���� + ���� + ����� − ����� + 4������Z:	|� =�1 2⁄ �S���� + ���� − ����� − ����� + 4������Z. Here it can 

be observed that all the three eigenvalues are negative 

quantities if the following three conditions are satisfied by 

the parameters: (i) ��� < 0, (ii) U����� − ����� + 4������X <���� + ���� and (iii) 	��� + ��� − ����� − ����� + 4������ <0. Thus, it can be concluded that the equilibrium point \j	is 

stable conditionally. 

Conditionally locally stable at 	\k = �6k, 7k, 8k� : At 

this equilibrium point all the three populations of the model 

co-exist. The community matrix at \k	reduces to the form as 

pk = ~K�� K�� K��K�� K�� K��K�� K�� K��� 

Here in	pk, the matrix elements represent some expressions 

as K�� = 1 − 26k + MD��7k �1 + E�6k�x⁄ N − G����, K�� =MD��6k �1 + E�6k�⁄ N, K�� = −G��6k, K�� = D��7k , K�� =E� − 2E�7k + D��6k − E� − ME��8k �1 + E7k��⁄ N, K�� =ME��7k �1 + E7k�⁄ N, K�� = G��8k, K�� =ME��8k �1 + E7k��⁄ N, 	K�� = F� − 2F�8k + G��6k +ME��7k �1 + E7k�⁄ N. 
The local stability of this kind of system can be obtained 

using Routh – Hurwitz criteria. The objective of this criterion 

is to find the roots of the characteristics equation without 

actually solving it. According to this criterion, the 

characteristics equation of the community matrix at the given 

equilibrium point |pk − |}| 	= 0	can be written as |� + �|� + �| + � = 0                            (8) 

Here in (8), � = −�K�� + K�� + K��� � = −�K��K�� − K��K�� − K��K�� − K��K�� + K��K��+ K��K��� 
� = −	�K��	K��K�� − K��K��K�� − K��K��K�� + K��K��K��+ K��K��K�� − K��K��K��� 

Recall that the system is stable if the roots lie on the left 

half plane. In other word, from equation (8), the system is 

locally stable if	� > 0, � > 0 and	�� > �. 

2.9. Global Stability Analysis 

In section 1.8, the community matrix at each equilibrium 

point is found and the local behaviors of the system at each 

equilibrium point were determined. However, in this section 

the global stability of the system is considered for the 

identified equilibrium points. In order to obtain the global 

stability, the Lyapunov quadratic function is introduced. 

Here, before determine the global stability of the system, lets 

write the system equation as a matrix as 	� ′ = ����	                                    (9) 

Here in (9), the notation 	� ′ = �6�, 7, ′ 8′�� , � =�m, n, ℎ�, � = �6, 7, 8�� . In order to change the 

system of equation into linear form, differentiate the right 

hand side of the equation of (9) with respect to �. Thus, the 

linearized form of the equation can be represented as 	� ′ = p�	                                       (10) 

Here, p	 represents the linearized form of the original 

equation ����	which is also called the community matrix. 

Therefore, the global stability of the system can be 

determined from the community matrix at the origin. 

In this paper the system of equation is globally 

asymptotical stable at the equilibrium point 	\g	, 	\i	 and	\j	. 
But, in this section, the global stability at the coexistence 

equilibrium point 	\k	  is shown here as the following 

theorem. 

Theorem 1.2. The coexistence equilibrium point 	\k		 is 

globally asymptotically stable if 267�� + 268�� + 287�� <0 or if −6� − 7� − 8� + 267�� + 268�� + 287�� < 0 

Proof: Consider the community matrix at the coexistence 

equilibrium point	\k		which can be given as: 	� ′ = pk�	                                          (11) 

Here in (11), the matrix notations used are 	�� =
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�6�	7�	8��� , pk = ~K�� K�� K��K�� K�� K��K�� K�� K���  and 	� = �6, 7, 8�� . 

The objective here is to study the dynamical behavior of �� = pk� by Lyapunov direct method. Consider a quadratic 

Lyapunov function candidate as	���� = ��\�. Here p is a 

real symmetric positive definite matrix. Let the matrix \	is of 

the form 

\ = ~\�� \�� \��\�� \�� \��\�� \�� \��� 

Now, Lyapunov equation of the form 	\pk + pk�\ = −Q 

can be used to find the entries of	\. 

Here, Q is any symmetric positive matrix and without loss 

of generality it can be selected as	Q = I�. Thus, on solving 

Lyapunov equation and after performing some algebraic 

operations the entries of matrix \ are obtained as: 

\�� = a�0�� ���+ \��K�� + \��K���, \�� = a�0&& ���+ K��\�� +K��\���, \�� = a�0// ��� + \��K�� + K��\���, \�� =a�0��'0&& �K��\�� + K��\�� + K��\���, \�� = a�0�& �K��\�� +K��\�� + K��\�� + \���K�� + K����, \�� = a�0&&'0// �K��\�� + K��\�� + K��\�� + K��\��� 
Here, it is straight forward to verify that the six elements \��, \��, \��, \��,	\��	and \��	are all positive quantities. 

Recall that a matrix \  is said to be a real symmetric 

positive definite matrix if the determinant of each of the 

minor of the matrix p are positive. That is if 

|\��| > 0, �\�� \��\�� \��� > 0	m�
	�\��\�� − \���� > 0 and 

�~\�� \�� \��\�� \�� \��\�� \�� \���� for 

\���\��\�� − \���� − \���\��\�� − \��\���+ \���\��\�� − \��\��� > 0 

Hence, the eigenvalues of matrix \	also positive and thus 

the matrix \	is a positive definite. 

So the Lyapunov function that is defined by the equation ���� = ��\� and also can be expressed as: ���� = 6�\�� + 7�\�� + 8�\�� + 267\�� + 278\��+ 268\�� 

Now, the time derivative of ����  is given by ����� =���� 0�0Y + ���� 0�0Y + ���� 0�0Y and it reduces to the following form: 

In general ����� = −6� − 7� − 8� + 267�� + 268�� +287�� 

Where �� = \���K�� + K��� + \��K�� + \��K�� +\��K�� + \��K�� �� = \��K�� + \��K�� + \��K�� + \���K�� + K��� + \��K�� �� = \���K�� + K�� + K��� + \��K�� + \��K�� + \��K�� 

Here, the Lyapunov function ����� is negative if 267�� +268�� + 287�� < 0  or if −6� − 7� − 8� + 267�� +268�� + 287�� < 0 

Hence, the differential of Lyapunov function � ′���  is 

negative if the above two conditions is satisfied. 

Recall that an equilibrium point is said to be globally 

asymptotically stable if the Lyapunov function ���� satisfies 

the following three conditions on the entire state space: 

(i) ���� is positive definite 

(ii) its time derivative � ′��� is negative and 

(iii) |����| → ∞ as	||�|| → ∞ 

Thus, the following result: It is already shown that the 

Lyapunov function ����	 satisfies all the cited three 

conditions in case of the interior equilibrium point. Hence, 	\k		is globally asymptotically stable based on the above two 

conditions. The following table shows the general behavior 

of the given system at each equilibrium points. 

Table 1. The dynamical behavior at each equilibrium points. 

Equilibrium points Conditions for the stability The nature of the system \� = �0, 0, 0� No condition unstable \� = �1, 0, 0� No condition unstable \� = �0, 1, 0� No condition unstable \g = �0, 0, 1� Under Section 2.9 Globally asymptotically stable \h = �6h, 7h, 0� Under Section 2.9 Unstable \i = �6i, 0, 8i� Under Section 2.9 Globally asymptotically stable \j = �0, 7j, 8j� Under Section 2.9 Globally asymptotically stable \k = �6k, 7k, 8k� Under Section 2.9 Globally asymptotically stable 

 

2.10. Numerical Simulation 

Analytical findings do not always describe the complete 

description of the system. In order to do so the numerical 

verification is very important it lies supportive. Thus, some 

numerical examples are conducted. Also, the dynamics of the 

three population species of the present model have been 

studied. The simulations and their analysis are presented here 

under. In these whole numerical examples a set of 

hypothetical parametric values used in the figures 2 to 5 are 

listed in the table below. 
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Table 2. Parametric values used for simulation study. 

 Lists of parameters 

List of figures 	��x �x� �� ��� ��� �� �� �x� ��x � �x 

Figure 2 0.1 0.1 0.25 1.5 1 0.2 0.2 1 1 0.5 1 
Figure 3 0.3 0.3 0.1 0.3 0.3 0.2 0.2 0.4 0.4 0.5 0.4 

Figure 4 0.4 0.2 0.1 1 0.3 0.1 0.4 0.1 0.2 0.4 0.3 

Figure 5 0.2 0.4 0.1 0.3 0.3 0.3 0.55 0.05 0.2 0.2 0.5 

 

Figure 2. Dynamics of three species at 	\g = �0, 0, 1�. 

 

Figure 3. Dynamics of the three species at \i 
 �6i, 0, 8i�. 
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Figure 4. Dynamics of the three species at \j 
 �0, 7j, 8j�. 

 

Figure 5. Dynamics of the three species at 	\k 
 �6k, 7k, 8k�. 

3. Result and Discussions 

In this model, it is observed different important 

equilibrium points at which the system is locally as well as 

globally stable. The stability of the system is determined 

based on the conditions at which the equilibrium points of the 

model equations are exists. For example, at equilibrium point 

\g only the predator species can survive. That is, since there 

is an alternative food source for the predator species, it can 

survive for long time. This result has been shown in figure 2 
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of the above graph. 

In addition, at the equilibrium point \i, only the first prey 

and the predator species can live together. Here, as it is 

observed from the figure 3 of the numerical simulation, the 

competition is observed between the first prey species and 

the predator. In fact, the predator species can eat the first prey 

species but, since the predator species is not fully depend on 

the prey species they get a good chance to survive for long 

time without extinct. The behavior of the system at \j  is 

similar with that of \i , the difference here is in \j  the 

predator species interact with the second prey species. The 

dynamics of these species have been observed in figure 4 of 

the above graph. 

Finally, it is seen that the three species can live together 

with some conditions described in this paper. Thus, the 

alternative food source for the predator species helps the 

preys species to survive for long period of time without 

extinct. 

4. Conclusions 

In this study, the dynamical behavior of three population 

species is considered. Of the three species two are preys and 

one is a predator. In this study, different prey dependent 

functional responses viz., type I and II, are considered. 

Additionally, the density dependent harvesting function has 

been imposed on the second prey. At the positive equilibrium 

points of the model equations the local and global stability 

analyses of the system have been conducted using Lyapunov 

function. The positive equilibrium points 	\g, \i , \j  and \k	 are shown to be globally asymptotically stable. The 

behavior or the model populations at these equilibrium points 

have been demonstrated both analytically and numerically. 
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