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Abstract: In this paper a deterministic mathematical model for the spread of malaria in human and mosquito populations are 

presented. The model has a set of eight non – linear differential equations with five state variables for human and three for 

mosquito populations respectively. Susceptible humans can be infected when they are bitten by an infectious mosquito. They 

then progress through the exposed, infectious, treatment and recovered or immune classes before coming back to the 

susceptible class. Susceptible mosquitoes can become infected when they bite infectious humans, and once infected they move 

through exposed and infectious class. However, mosquitoes once infected will never recover from the disease during their 

lifetime. That is, infected mosquitoes will remain infectious until they die. Formula for the basic reproduction number R0 is 

established and used to determine whether the disease dies out or persists in the populations. It is shown that the disease – free 

equilibrium point is locally asymptotically stable using the magnitude of Eigen value and Routh – Hurwitz stability Criterion. 

Result and detailed discussion of the analysis as well as the simulation study is incorporated in the text of the paper lucidly. 

Keywords: Dynamics of Malaria, SEIRS Model, Treatment, Local Stability, Routh – Hurwitz Criterion,  

Reproduction Number, Simulation Study 

 

1. Introduction 

Malaria is a disease having huge social, economic and 

health burden on human beings since ancient times. It is 

predominantly present in the tropical countries where rains 

and humid are more. Though the disease has been identified 

hundreds of years back and many prevention and treatment 

methods are invented it still remains as a major public health 

problem. 

The WHO estimated that there were 219 millions of cases 

of malaria world – wide resulting in 0.66 million deaths in 

the year 2010 [11, 13]. However, others have estimated that 

the number of cases of falciparum malaria alone lies 

between 350 and 550 millions and deaths rose from 1.0 

million in 1990 to 1.24 millions in 2010. Further, these 

estimations argue that the WHO’s statistical figures are much 

smaller than the actual [8, 9, 12]. 

Majority of malaria cases accounting about 65 percent 

occur in children of below 15 years old [9]. About125 million 

pregnant women are at risk of the infection in Sub – Saharan 

Africa and the maternal malaria is leading to an estimated 0.2 

million infant deaths each year [7]. There are about 10,000 

malaria cases per year in Western Europe and 1300 – 1500 in 

the United States [13]. About 900 people died of the disease 

in Europe during a decade from 1993 to 2003 [7]. 

Both global incidences of the disease and resulting 

mortalities have been observed declined in recent years. 

According to world health organization WHO deaths 

attributable to malaria in 2010 were reduced by over one 

third from 2000 having 985,000 incidents. The reduction in 

mortality is largely resulted due to the widespread use of 

insecticide – treated nets and artemisinin – based 

combination ACT therapies [6]. 

Mathematical models are particularly helpful as they 

consider and include the relative effects of various 

sociological, biological and environmental factors on the 

spread of a disease. The models have been playing an 

important role in the development of various controlling 

techniques for malaria epidemic. Analysis of mathematical 

models is important because they help in understanding the 

spreads of malaria so that suitable control techniques can be 

adopted for controlling the disease. 

In this study, treatment compartment has been included in 
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the basic SEIRS epidemic model and extended it to SEITRS 

model. The inclusion of this compartment and extension of 

the model is justified since treatment plays a crucial role in 

controlling the spread of malaria. The existing SEIRS 

mathematical model has four classes or compartments viz., 

Susceptible, Exposed, Infected and Recovered. The inclusion 

of the Treatment class to SEIRS model extended it to 

SEITRS model. Treatment represented by the letter T is a 

technique used to control the spread of malaria disease. The 

present modified model is an extension or modification of the 

existing mathematical models used to deal with malaria 

epidemic viz., SIR, SEIR, SEIS, SEIIR [1, 3, 4, 10, 15]. 

Thus here in this study, the SEITRS model is presented 

and shown that it describes the dynamics and controlling 

mechanism of malaria disease. The effect of treatment 

technique in the spread of malaria is also analyzed. 

Simulation studies of the model with variable values of 

sensitive parameters of the spread of malaria are performed 

and the results are incorporated in the text of the paper. 

Important conclusions are drawn and necessary 

recommendations have been made. 

2. The SEITRS Model 

Malaria disease occurs due to the bites of infected female 

anopheles mosquitoes. That is, the rate of malaria disease can 

be decreased by accelerating mortality or death rate as well 

as decelerating infection rate of the female Anopheles 

mosquitoes. 

Hence, it is needed to invent intervention strategies to 

increase mortality rate of the female anopheles mosquitoes in 

addition to the natural mortality and to decrease infection rate 

of such mosquitoes. However, the authors strongly believe 

that treatment of humans is much preferable than killing 

mosquitoes. Killing is offensive but treatment is defensive. 

Defense i.e., treatment strategy gives better results. Hence, in 

this study more attention is given to treatment. 

Many strategies have been designed and implemented to 

increase the mortality rate. These intervention strategies can 

increase the mortality rate of female anopheles mosquitoes 

and help directly to control the birth and spread of malaria. In 

the recent times many such intervention strategies are 

adopted worldwide. The important intervention strategies 

include (i) indoor residual spraying, IRS and (ii) insecticide 

treated bed net, ITN. 

In the present study treatment of infected human 

population is considered so that the female anopheles 

mosquitoes will not get infection and will not pass the 

disease to susceptible humans. Further, it is shown that the 

intervention strategy treatment plays a significant role in 

controlling the spread of malaria disease. 

2.1. Classification of Human Compartments 

The present mathematical model is built with an objective 

of analyzing the effect of intervention strategies such as 

treatment on the spread of malaria disease. Thus, the 

treatment class is considered and added to SEIRS model so 

as to extend it to SEITRS model. In the SEITRS model 

whole the human population is divided into five classes or 

compartments based on the properties they exhibit. The 

description of the classes and their properties are briefly 

explained here under. 

Susceptible human class ��: It contains humans those do 

not have malaria disease but are likely to be bitten by 

infected female anopheles mosquitoes causing malaria. The 

people in this class do not take any protective measurements 

against malaria disease. In general, all the common people 

are included in this class. Humans of the susceptible class 

have the potential to remain either in the same class or to 

enter into exposed class. 

Exposed human class ��: It contains humans that have got 

infection but are not infectious. That is, these humans exhibit 

the symptoms and suffer from the disease but are not capable 

of propagating the disease to female anopheles mosquitoes. 

People from susceptible class come into exposed class. 

Infected human class  �� : It contains humans those are 

already infected and got malaria disease. These people while 

suffering from the disease are capable of transferring the 

disease to female anopheles mosquitoes. People come into 

infected class from exposed class. People from infected class 

have got the potential to enter into recovered class directly if 

the disease is naturally cured or enter into treatment class for 

treatment. 

Treatment human class �� : It contains humans those are 

already infected and got malaria disease. The people of this 

class are given medical care or clinical treatment. People into 

the treatment class come from only infected class. After 

completion of the treatment successfully, the people from 

treatment class will go to recovered class. 

Recovered human class ��: It contains people who recover 

from the malaria disease either by treatment or by natural 

reasons and return to normal status of health. People come 

into the recovered class from both infected and treatment 

classes. After recovery the recovered people will go again 

into susceptible class. 

Further, it is reasonable to assume that sick people cannot 

travel far away or they cannot move from place to place. 

Thus, the immigrations of malaria infected people were not 

included in this model. 

2.2. Classification of Mosquito Compartments 

Anopheles is a kind of mosquito that has the capacity of 

transmitting malaria parasite to humans. However, Anopheles 

male mosquitoes cannot carry plasmodium parasite and 

hence they do not cause for malaria in humans. Thus, 

anopheles male mosquitoes are not included in the model. In 

contraction to males, infected female anopheles mosquitoes 

through bites can cause malaria in humans. Thus, only female 

anopheles mosquito population is considered and included in 

the present malaria model. 

Further, it is to be noted that only female anopheles 

mosquitoes bite humans for blood meals but not male ones. 

In the present model all the female anopheles mosquitoes are 

divided into three classes or compartments based on the 

properties they exhibit. The three compartments of such 

mosquitoes and the respective properties are described 
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briefly here under. 

Susceptible mosquito class  �� : It contains female 

anopheles uninfected mosquitoes. The mosquitoes of this 

class are not infected so far and thus their bites will not lead 

to malaria disease in humans. The population size of these 

mosquitoes grows with the constant recruitment rate 

of 	� and diminishes with the natural death rate of α�. The 

susceptible female anopheles mosquitoes get infected on 

feeding themselves with the blood of malaria infected 

humans and then they leave susceptible mosquito class and 

enter infected mosquito class. Susceptible mosquitoes bite 

the infected humans with the rate of  �� . Further, it is 

assumed that the susceptible mosquitoes get infected with a 

rate of ���� when they bite infected humans. 

Exposed mosquito class  �� : It contains exposed female 

anopheles mosquitoes. Though these mosquitoes are exposed 

to the disease they are not infectious i.e., these are not capable 

of transferring the disease to susceptible humans. The exposed 

mosquitoes will reduce with a natural death rate ofα�. 

Infected mosquito class  �� : It contains infected female 

anopheles mosquitoes. The mosquitoes of this class are 

already infected and their bites can lead to malaria disease in 

humans. The population size of this class grows with a 

transfer rate proportional to  �� from the susceptible 

mosquito class. The infected mosquitoes diminish with the 

natural death rate of α� . The infected female anopheles 

mosquitoes transfer infection to susceptible humans when the 

former feed them self with the blood of the latter. Infected 

mosquitoes bite the susceptible humans with the rate of��. 

Further, it is assumed that the infected mosquitoes transfer 

infection with a rate of  ���� to humans when they bite 

susceptible humans. 

3. Formulation of the Model 

The mathematical model of malaria transmission and 

dynamics considered in this study consists of SEITRS 

compartments for human population and SEI for mosquito 

population. The model is formulated for the spread of malaria 

in the human and mosquito populations with the total 

population sizes at time  
 denoted 

by ���
� and ���
� respectively. 

The human populations are further compartmentalized into 

epidemiological classes as susceptible ���
�, exposed ���
�, 

infected  ���
� , treated   ���
� and recovered  ���
� . The 

mosquito populations are similarly compartmentalized into 

epidemiological classes as susceptible  ���
� , 

exposed ���
�and infected ���
�. The vector component in 

the present model does not include any immune class since 

infected mosquitoes never recover from the infection. That is, 

their infective period ends with their death due to their 

relatively short lifecycle. Hence, the total population sizes of 

both humans and mosquitoes are the sum of the sizes of the 

respective classes:   ���
� =  ���
� + ���
� +  ���
� +
���
� +  ���
� and ���
� =  ���
� + ���
� +  ���
�. 

The immune class in the mosquito population is negligible 

due to the reason already stated and death occurs equally in 

all classes. However, this model can also be used for diseases 

that persist in a population for a long period of time with vital 

dynamics. 

The present model is constructed incorporating a set of 

basic assumptions: (i) Total population sizes of both human 

and vectors are assumed to be constant (ii) The recovered 

individuals of human population do not develop permanent 

immunity (iii) The population sizes of both human and vector 

compartments are non – negative. This fact is proved and 

presented in the text in form of theorem 1 (iv) Also, all the 

parameters involved in the model equations are non – 

negative quantities. Description of these parameters is given 

in Table 1 (v) All newborns of both human and mosquitoes 

are susceptible to infection (vi) the development of malaria 

starts when the infectious female mosquito bites susceptible 

human host or susceptible female mosquito bites infectious 

human host (vii) individuals move from one class to another 

as per their status with respect to the evolution of the disease 

(viii) Humans enter the susceptible class through the constant 

recruitment rate 	�, leave from the susceptible class through 

death rate �� and exposed rate ���� (ix) susceptible humans 

enter the exposed class through an exposed rate of ����  and 

leaves this class with an infection rate of ���� and (x) all 

human individuals whatever their status is subjected to a 

natural death occurring at a rate of �� and disease induced 

death rate of  �� . Hence the flow chart of the model is 

presented here under with the above assumptions. 

Table 1. Parameters of the model and their interpretations. 

Parameters Interpretations 

	� Recruitment rate of susceptible humans 

�� Force of infection of humans from susceptible state to exposed state 

α� Natural death rate of humans 

�� Rate of progression of humans from exposed to infectious state 

�� Rate of progression of humans from infectious to treatment state 

�� Disease – Induced death rate for humans 

�� Flow rate of humans from infectious to recovered state due to treatment 

�� Flow rate of humans from infectious to recovered state due to natural reasons 

�� Flow rate from recovered to susceptible class due to loss of immunity for humans 

	� Recruitment rate of susceptible mosquitoes 

�� Flow rate of mosquitoes from susceptible to exposed state 

�� ��: Natural death rate of mosquitoes 

�� Flow rate of mosquitoes from exposed to infectious state 
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Figure 1. Flow chart of SEITRS malaria model. 

In Figure 1, the compartmentalization of both human 

and mosquito populations are given. Also shown in the 

figure the flow directions and flow rates of both the 

populations. The notations of the model parameters and 

the respective descriptions are given in what follows in a 

tabular form. Note that all the model parameters are 

independent of time. 

The notations of the model variables and the respective 

descriptions are given in what follows in table 2. Note that all 

the model variables or sizes of all compartments are 

dependent on time. However, total population sizes of both 

humans and mosquitoes are considered as constant. 

Table 2. Variables of the model and their interpretations. 

Variables Interpretations 

���
� Population size of susceptible human class 

E��
� Population size of exposed human class 

I��
� Population size of infectious human class 

T��
� Population size of treatment human class 

R��
� Population size of recovered or immune human class 

S��
� Population size of susceptible mosquitoes class 

E��
� Population size of exposed mosquitoes class 

I��
� Population size of infectious mosquitoes class 

Susceptible humans get infected at a certain probability 

when they contact infectious mosquitoes. They then progress 

through the exposed, infected, treated and recovered classes 

before reentering the susceptible class. Susceptible 

mosquitoes get infected at a certain probability when they 

bite infectious humans and then move through the exposed 

and infectious classes. Both humans and mosquito 

populations grow naturally following logistic function. 

Applying the assumptions, definitions of state variables and 

parameters as stated above the coupled system of non – linear 

differential equations describing the dynamics of malaria in 

the human and mosquito populations are formulated as 

dS� dt⁄ = 	� # ������ + ���� # α�S� 

dE� dt⁄ � ������ # ���� # α�E� 

dI� dt⁄ � ���� # ���� # ���� # ��� � ����� 

dT� dt⁄ � ���� # ���� # ����                (1) 

dR� dt⁄ � ���� � ���� # ���� # α�R� 

dS� dt⁄ � 	� # ������ # ���� 

dE� dt⁄ � ������ # ���� # ���� 

dI� dt⁄ � ���� # ���� 

Further, the initial population sizes are considered as initial 

conditions of the system of model equations. They 

are S��0� � S�%, E��0� � E�%, I��0� � I�%, T��0� �
T�%, R��0� � R�% and S��0� � S�%, E��0� � E�%, I��0� �
 I�% . Thus, the initial conditions representing population 

sizes are non – negative. That is, the initial conditions are 

non – negatives such that 

S��0� ' 0, ���0� ' 0, ���0� ' 0 ���0� ' 0, ���0� '
0, S��0� ' 0, ���0� ' 0, I��0� ' 0 . Also, the total 

population sizes �� and �( can be determined by 

�� � E� � �� � T� � �� � ��             (2) 

�� � E� � �� � ��                           (3) 



 Mathematical Modelling and Applications 2020; 5(2): 105-117 109 

 

4. Mathematical Analysis of the Model 

Equations 

The mathematical analysis of the present model described 

by the system of differential equations (1) is conducted and 

the results are presented here. The model equations are 

required be analyzed in a feasible region. Hence, it is 

mandatory to identify in the first step the region. All state 

variables and parameters are supposed to be positive since 

they represent populations and their growths. The invariant 

region for the model formulated can be found to be 

Ω� � *��ℎ , �ℎ, �ℎ , �ℎ, �ℎ� ∈ ℝ+
5 : 0�ℎ+�ℎ+�ℎ + �ℎ + �

ℎ
1 ≤ �	ℎ �ℎ⁄ �3 

Ω� = 4��� , �� , ��� ∈ ℝ5
6 : ��� + �� + ��� ≤ �	( �(⁄ �7 

Therefore, any solution of the system of ordinary 

differential equations (1) is feasible for all t > 0if that enters 

the invariant region Ω = Ω� × Ω�. 

4.1. Positivity of the Solution 

In order that the model equations (1) are biologically and 

epidemiologically meaningful and well posed it is 

appropriate to show that all the state variables are non – 

negative. This requirement is stated as a theorem and its 

proof is provided as follows: 

Theorem 1: 

Any solution of the model equations (1) together with the 

initial conditions is non – negative. Alternatively it can be stated 

as follows: if  S��0� > 0, ���0� > 0, I��0� > 0, ���0� >0, R��0� > 0, S��0� > 0, ���0� > 0  and  I��0� > 0, then 

the solution region   4S��t�, ���t�, I��t�, ���t�, R��t�, S��t�, ���t�, I��t�7  

of the system of equations (1) is always non – negative. 

Proof: 

In order to show that every solution of the dynamical 

system (1) is positive each differential equation of the system 

is considered separately and treated. 

Positivity of infective mosquito population�I��: Consider 

the last differential equation of the system of differential 

equations (1) as �dI� 9
⁄ � = ����� − �����. Note that the 

term ����is a positive quantity and thus by dropping it the 

foregoing equation can be expressed as an inequality 

as  dI� 9
⁄ ≥ −���� . Further, separation of variables 

reduces it to dI� ��⁄ ≥ −��dt and finally integration yields 

a solution as  �� ≥ ;��%e= > ?@ABCD E . Since the initial 

population size of infected mosquitoes is non – negative 

i.e., ��% ≥ 0and the exponential function is always positive it 

can be concluded that �� ≥ 0. Thus, the solution of ���t� is 
always non – negative. 

Positivity of exposed mosquito population�E��: Consider 

the differential equation  dE� dt⁄ = ������ − ���� −����  of the system of differential equations (1). Note that 

the term ������is a positive quantity and thus by dropping it 

the foregoing equation can be expressed as an inequality 

as  dE� dt⁄ ≥ −��� + ����� . Further, separation of 

variables reduces it to  dE� ��⁄ ≥ −��� + ���dt and 

finally integration yields a solution 

as  E� ≥ ;��% F= > �G@5?@�ABCD E . Since the initial population 

size of exposed mosquitoes is non – negative i.e.,  ��% ≥0 and the exponential function is always positive it can be 

concluded that �� ≥ 0. Thus, the solution of ���t�is always 

non – negative. 

Positivity of infective human population�I��: Consider the 

differential equation  dI� dt⁄ = ���� − ���� − ��� +�����  of the model (1). Since the term  ���� is a positive 

quantity thus by dropping it the foregoing equation can be 

expressed as an inequality as dI� dt⁄ ≥ −��� + �� + �� +����� . Further, separation of variables reduces it to an 

inequality dI� ��⁄ ≥ −��� + �� + �� + ���dt and finally 

integration yields a solution as �� ≥ ;��% F= > �?H5IH5JH5KH�ABLD E . Since the initial population 

size of infective humans is non – negative i.e., ��% ≥ 0 and 

the exponential function is always positive it can be 

concluded that �� ≥ 0. Thus, the solution of ���t� is always 

non – negative. 

Positivity of susceptible mosquito population �S�� : 

Observe the sixth differential equation  dS� dt⁄ = 	� −������ − ���� of the dynamical system (1). Since the 

term  	� is a positive quantity thus by dropping it the 

foregoing equation can be expressed as an inequality 

as dS� dt⁄ ≥ −����� + ����� . Further, separation of 

variables reduces it to  dS� ��⁄ ≥ −����� + ��� dt and 

finally integration yields a solution 

as S� ≥ ;��% e= > �M@NH5?@�ABCD E. Since the initial population 

size of susceptible mosquitois non – negative i.e.,  ��% ≥0 and the exponential function is always positive it can be 

concluded that S� ≥ 0. Thus, the solution of S��t�is always 

non – negative. 

Positivity of treatment human population�T��: Look at the 

fourth differential equation dT� dt⁄ = ���� − ���� − ���� of 

the dynamical system (1). Since the term ���� is a positive 

quantity thus by dropping it the foregoing equation can be 

expressed as an inequality as  dT� dt⁄ ≥ −��� + ����� . 

Further, separation of variables reduces it to  dT� T�⁄ ≥−��� + ���dt and finally integration yields a solutionasT� ≥;T�% e> =�OH5?H�ABCD E . Since the initial population size of 

treatment humansis non – negative i.e.,  T�% ≥ 0 and the 

exponential function is always positive it can be concluded 

that  T� ≥ 0 . Thus, the solution of  T��t� is always non – 

negative. 

Positivity of recovered human population �R�� : Here 

consider the third differential equation   dR� dt⁄ = ���� +���� − ���� − α�R�of model (1). Since the term ���� is a 

positive quantity thus by dropping it the foregoing equation 

can be expressed as an inequality as  dR� dt⁄ ≥ −��� +
α��R� . Further, separation of variables reduces it 

to dR� R�⁄ ≥ −��� + α��dt and finally integration yields a 
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solution as R� ≥ ;R�% e= > �PH5αQ�AB CD E . Since the initial 

population size of recovered humans is non – negative 

i.e., R�% ≥ 0 and the exponential function is always positive 

it can be concluded thatR� ≥ 0. Thus, the solution of R��t� is 
always non – negative. 

Positivity of exposed Human population�E��: To show this, 

consider the second differential equation  dE� dt⁄ =������ − ���� − α�E� of model (1). Since the 

term  ������ is a positive quantity thus by dropping it the 

foregoing equation can be expressed as an inequality 

as dE� dt⁄ ≥ −��� + α����. Further, separation of variables 

reduces it to  dE� ��⁄ ≥ −��� + α��9
 and finally 

integration yields a solution as E� ≥ ;��% e= > �GH5αQ�ABCD E . 

Since the initial population size of exposed humans is non – 

negative i.e., E�% ≥ 0 and the exponential function is always 

positive it can be concluded thatE� ≥ 0. Thus, the solution 

of E��t� is always non – negative. 

Positivity of susceptible human population�S��: Consider 

the first differential 

equation  9�� 9
⁄  = 	� + ����−������ − α�S� of the 

system of differential equations (1). Since the term  	� +����is a positive quantity thus by dropping it the foregoing 

equation can be expressed as an inequality as 9�� 9
⁄ ≥−����� + α��S�. Further, separation of variables reduces it 

to 9�� S�⁄ ≥ −����� + α��9
and finally integration yields a 

solution as  S� ≥ ;S�% e= > �MHN@5αQ�ABCD E . Since the initial 

population size of exposed humansis non – negative 

i.e., S�% ≥ 0 and the exponential function is always positive 

it can be concluded that S� ≥ 0. Thus, the solution of S��t� is 

always non – negative. 

4.2. Boundedness of the Solution Region 

Theorem 2: 

The non – negative solutions of the model system (1) are 

bounded. That is, the population sizes of both humans and 

mosquitoes are bounded. 

Proof: 

Note that if the total population sizes of both human and 

mosquitoes are bounded then the sizes of each compartment 

are also bounded. Hence, it is sufficient to prove that the total 

sizes of both the populations are bounded. That is, the 

solutions lie in the bounded region. 

Boundedness of human population  ���
� ≤ 	� α�⁄ : The 

rate of change of total human population size  ���
� =���
�  +  E��t�  + ���
� +  T��t� +  ���
� can be obtained 

as  9���
� 9
⁄ = 9���
� 9
⁄ + 9���
� 9
⁄ + 9���
� 9
⁄ +9���
� 9
⁄ + 9���
� 9
⁄ . On substituting the model 

equations (1) and after some algebraic simplifications the 

fore going differential equation takes the simplified form 

as 9�� 9
⁄ = 	� − ���� − α�N� . Now, since the 

term  ����  appearing on the right hand side is a positive 

quantity, without loss of generality it can be expressed as an 

inequality as  9�� 9
⁄ ≤ 	� − α�N� . Thus, the solution of 

this differential inequality is found to be ���
� ≤ �	� α�⁄ � +S��% − 	� α�⁄ TF=UQVgiving that  ���
� ≤ �	� α�⁄ � as 
 → ∞. 

The term ��% denotes the initial total human population. It 

can be interpreted that the total human population grows and 

asymptotically converges to a positive quantity �	� α�⁄ � . 

Thus it is an upper bound of the total human 

population  ���
� . Whenever the initial human population 

starts off either lower below or higher above�	� α�⁄ �then it 

grows or decays over time and finally reaches the upper 

asymptotic value. 

Boundedness of mosquito populationN��t� = �	� ��⁄ �: 

Similarly, the rate of change of total mosquito population 

size  ���
� = ���
� + E��t� + ���
� is obtained on 

differentiating as  9���
� 9
⁄ = 9���
� 9
⁄ + 9���
� 9
⁄ +9���
� 9
⁄ . On substituting the model equations (1) and after 

some algebraic simplifications the foregoing differential 

equation takes the simplified form  9 9
⁄ ���
� = 	� −����. Also, solution of this differential equation is found to 

be  ���
� = 	� �� + S��% − �	� ��F=?@Y⁄ �T⁄  giving 

that N��t� → 	� ��⁄  as 
 → ∞. 

The term N�% denotes the initial total mosquito population. 

It can be interpreted that the total mosquito population grows 

and asymptotically converges to the positive quantity 	� ��⁄ . 

Thus  	� ��⁄  is an upper bound of the total mosquito 

population N��t�. 

4.3. Disease Free Equilibrium 

Disease – free equilibrium points are steady state solutions 

of the model equations. Further, at these points malaria does 

not present in the human population and similarly 

plasmodium parasite does not present in the mosquito 

population. 

Clearly equilibrium points are the solutions of the model 

equations satisfying the 

conditions 9�� 9
⁄ = 9�� 9
⁄ = 9�� 9
⁄ = 9�� 9
⁄ =9�� 9
⁄ = 9�� 9
⁄ = 9�� 9
⁄ = 9�� 9
⁄ = 0. Making uses 

of these conditions in the system of non –linear differential 

equations of model (1) it can be obtained as 	� − ������ + ���� − α�S� = 0 ������ − ���� − α�E� = 0 ���� − ���� − ���� − ��� + ����� = 0 ���� − ���� − ���� = 0 ���� + ���� − ���� − α�R� = 0 	� − ������ − ����  = 0 ������ − ���� − ���� = 0 ���� − ���� = 0 

Further, disease – free implies that �� = 0 and �� = 0 since 

they are diseased classes of human and mosquito populations 

respectively. Using disease – free conditions the above set of 

equations reduce to 	� − α�S� = 0 	� − α�S� = 0 

On solving, the solutions are obtained as 
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��% = 	�α� 

��% = 	�α� 

Thus, the disease – free equilibrium �% = ���%,  ��%,  ��%,  ��%,  ��%,  ��% ,  ��% ,  ��% � of the 

malaria model (1) is given by  �% = �	� α�⁄ , 0, 0, 0, 0, 	� α�⁄ , 0, 0�    (4) 

Thus,  �%represents the state in which there is no infection 

or absence of malaria in the human and mosquito populations. 

4.4. Basic Reproduction Number 

The basic reproduction number  R% is the number of 

secondary infections that one infectious individual would 

create over the duration of infectious period provided that 

everyone else is susceptible. To find formula for it the next 

generation operator approach can be used as described by 

Diekmann et al., (1990). Reproduction number is the 

threshold for many epidemiology models which determines 

whether a disease can invade in a population or not. 

If  �% < 1 then each infected individual produces on 

average less than one new infected individual so it is 

expected that the disease would die out. On the other hand 

if �% > 1 then each individual produces more than one new 

infected individual so it is expected that the disease would 

continue spreading in the population. This means that the 

threshold quantity for eradicating the disease is to reduce the 

value of �% to be less than one. 

To determine the basic reproduction number�% using the 

next generation approach for the present model the following 

steps are to be followed: The reproduction number  �% is 

defined as the largest eigenvalue of the next generation matrix. 

The formulation of this matrix involves determining two 

classes viz., infected and non-infected from the model. That is, 

the basic reproduction number cannot be determined from the 

structure of the mathematical model alone but depends on the 

definition of infected and uninfected compartments. 

Assuming that there are \ compartments in the model of 

which the first ] compartments are of infected 

individuals. _̂  �`�  =  _̂=�`� −  _̂5�`� Where  _̂5�`� is the 

rate of transfer of individuals into compartment aby all other 

means and _̂=�`� is the rate of transfer of individual out of 

the aY� compartment. It is assumed that each function is 

continuously differentiable at least twice in each variable. The 

disease transmission model consists of nonnegative initial 

conditions together with the following system of equations: b̀_ =  ℎ_�`� =  c_�`� −  _̂�`�, a =  1,2,3, …  \ where  xb  is 

the rate of change of `. 

The next is the computation of the square matrices c and ^ 
of order ] × ], where ] is the number of infected classes, 

defined 

by  c = hic_ i j̀⁄ �`%�k and  ^ = hi _̂ i j̀⁄ �`%�k with  1 ≤ a, l ≤  ], such that c is nonnegative, ^ is a non singular 

matrix and `% is the disease – free equilibrium point (DFE). 

Since  c is nonnegative and  ^ is nonsingular, then  ^=m is 

nonnegative and also c^=m is nonnegative. Hence the matrix 

of c^=m is called the next generation matrix for the model. 

Finally the basic reproduction number �% is given by �% = n� c^=m�                                 (5) 

Here in (5), n�o� denotes the spectral radius of matrix o 

and the spectral radius is the biggest non – negative 

eigenvalue of the next generation matrix. 

Rewriting the model equations (1) starting with the 

infected compartments for both populations �� , �� , ��, ��  followed by uninfected classes �� , �� , ��, �� as 

ApQAV = ������ − ���� − α�E�  

AqQAV = ���� − ���� − ���� − ��� + �����  

AprAV = ������ − ���� − ����  

AqrAV = ���� − ����  

AsQAV = 	� − ������ + ���� − α�S�  

AtQAV = ���� − ���� − ����  

AuQAV = ���� + ���� − ���� − α�R�  

AsrAV = 	� − ������ − ����  

Hence, the vectorsc_  and _̂  are defined as 

c_ = v������00������
w                              (6) 

_̂ = xyy
z ��� + α��E���� + �� + �� + ����� − ������� + ��������� − ���� {||

}           (7) 

Now, with the partial derivatives of (6) with respect 

to  ��� , �� , �� , ��� the Jacobian matrix of  c_  is 

constructed and that at the disease – free equilibrium point (4) 

takes that form as 

c = v0 0 0 ����0 0 0 00 0 0 00 ���� 0 0 w = v0 0 0 ��	� α�⁄0 0 0 00 0 0 00 ��	� α�⁄ 0 0 w       (8) 

Similarly, with the partial derivatives of (7) with respect 

to  ��� , �� , �� , ��� the Jacobian matrix of  _̂ is 

constructed and that at the disease – free equilibrium point (4) 

reduces to the form as 

^ = v�� + α� 0 0 0−�� �� + �� + �� + �� 0 00 0 �� + �� 00 0 −�� ��
w  (9) 
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In order to find inverse of the matrix  ^ it is needed to 

find  ~9l�^� and  9F
�^� because  a\��^� =  S~9l�^� 9F
�^�⁄ T. Thus, 

~9l�^� = xyy
z����� + ������ + �� + �� + ��� 0 0 0������� + ��� ����� + α����� + ��� 0 00 0 ����� + α����� + �� + �� + ��� 00 0 ����� + α����� + �� + �� + ������ + α����� + �� + �� + ������ + ���{||

}
 

And 9F
�^� = ����� + ������ + α����� + �� + �� + ��� 

^=m =  
xyy
yyy
z m�GH5UQ� 0 0 0GH�GH5UQ��JH5IH5?H5KH� m�JH5IH5?H5KH� 0 00 0 m�G@5?@� 00 0 G@?@�G@5?@� m?@{||

|||
}
                                            (10) 

Now computing c^=mto get 

c^=m =
xyy
yyz

0 0 MH�HG@UQ?@�G@5?@� MH�H?@UQ0 0 0 00 0 0 0M@�@GHUr0�H��Q10�H��H��H��H1
M@�@Ur�JH5IH5?H5KH� 0 0 {||

||}                                              (11)

Thus 

c^=m��%� =
xyy
yyz

0 0 MH�HG@UQ?@�G@5?@� MH�H?@UQ0 0 0 00 0 0 0M@�@GHUr0�H��Q10�H��H��H��H1
M@�@Ur�JH5IH5?H5KH� 0 0 {||

||}                                           (12) 

From (12), it is now possible to calculate the eigenvalues to determine the basic reproduction number �% by taking the 

spectral radius of the matrix c^=m. 

Thus, the characteristic equation is computed by|c^=m��%�  −  �� | =  0, and it yields 

xyy
yyy
z − � 0 ��	���α������ + ��� ��	���α�0 − � 0 00 0 − � 0��	���α��GH5UQ��JH5IH5?H5KH�

��	�α���� + �� + �� + ��� 0 − � {||
|||
}

= 0 

Therefore the eigenvalues are given by 

� = 0 �� � = ±� ��	���α� � ��	���α��GH5UQ��JH5IH5?H5KH�� 

The dominant eigenvalue of the matrix c^=m is 

� = � ��	���α� � ��	���α���� + α����� + �� + �� + ���� 

Therefore, the basic reproduction number is 

�% = � MH�H?@UQ � M@�@GHUr�GH5UQ��JH5IH5?H5KH��            (13) 

From the formula for�%, it can be quantified that higher 

values of ��, 	� , ��, 	� and ��  can allow the outbreak of the 

disease. Conversely, for smaller values 

of �� , 	�, ��, 	�  and  ��  the disease dies out. The 

reproduction number is a powerful parameter which 

measures the existence and stability of the disease in the 

human and mosquito population. 

If the condition on parameters ���	�����	���� <0��� α�1��� + α����� + �� + �� + ��� satisfies i.e., �% <1 then the disease dies out. On the other hand, 

if  ���	�����	���� > 0��� α�1��� + α����� + �� + �� +��� i.e.,�% > 1 then the unique endemic equilibrium exists 

and the disease persists within the human and mosquito 

populations. 

 



 Mathematical Modelling and Applications 2020; 5(2): 105-117 113 

 

4.5. Stability Analysis of the Disease Free Equilibrium 

Point 

The equilibria are obtained by equating the right hand side 

of the system of differential equations (1) to zero. Disease – 

free equilibrium DFE of the model is the steady – state 

solution of the model in absence of the malaria disease. It is 

already shown that the DFE of the malaria model  �% =���%,  ��%,  ��%,  ��%,  ��%,  ��% ,  ��% ,  ��% � 

is given by 

�% = �	� α�⁄ , 0, 0, 0, 0, 	� α�⁄ , 0, 0�  (14) 

Theorem 3: 

The DFE  E% of the system (1) is locally asymptotically 

stable if �% < 1 and unstable if �% > 1. 

Proof: 

To construct Jacobian matrix of the model, consider that 

the right hand sides of the model equations (1) are 

represented by the following functions: 

�m =  	� − ������ + ���� − α�S�, �� =  ������ − ���� − α�E�,  �6 = ���� − ���� − ���� − ��� + ����� , �� =  ���� −���� − ���� , �� =  ���� + ���� − ���� − α�R�, �� =  	� − ������ − ����, �� = ������ − ���� − ����, �� =���� − ����. 

Here �_ = �_���, E�, �� , T�,  ��, �� , E�,  ���, ∀ a = 1, 2, … , 8. 

The Jacobian matrix is given by 

� =

�
���
���
��
 �m¡H �m¢H �mNH �m£H �m¤H �m¡@ �m¢@ �mN@��¡H ��¢H ��NH ��£H ��¤H ��¡@ ��¢@ ��N@�6¡H �6¢H �6NH �6£H �6¤H �6¡@ �6¢@ �6N@��¡H ��¢H ��NH ��£H ��¤H ��¡@ ��¢@ ��N@��¡H ��¢H ��NH ��£H ��¤H ��¡@ ��¢@ ��N@��¡H ��¢H ��NH ��£H ��¤H ��¡@ ��¢@ ��N@��¡H ��¢H ��NH ��£H ��¤H ��¡@ ��¢@ ��N@��¡H ��¢H ��NH ��£H ��¤H ��¡@ ��¢@ ��N@¥

¦¦¦
¦¦¦
¦¦
§

 

In �, the matrix elements are partial derivatives denoted by the notations�m¡H =  i�m i��⁄  and so on. 

Further, the Jacobian matrix of model (1) at the disease – free equilibrium �% reduces to the form as 

���%� =

�
���
���
��
 −α� 0 0 0 �� 0 0 −���	� α�⁄ �0 −��� + α�� 0 0 0 0 0 ��	� α�⁄0 �� −��� + �� + �� + ��� 0 0 0 0 00 0 �� −��� + ��� 0 0 0 00 0 �� �� −��� + α�� 0 0 00 0 −���	� α�⁄ � 0 0 −�� 0 00 0 ��	� α�⁄ 0 0 0 −��� + ��� 00 0 0 0 0 0 �� −�� ¥

¦¦¦
¦¦¦
¦¦
§

        (15) 

The characteristic equation |J�E%� − ��| =  0of the matrix 

(14) is given by �−α� − ���−�� − α� − ���−�� −���−�� − �� − ��4�~ − ���© − ���ª − ���d − �� −�������	� α�⁄ ����	��� α�⁄ �7 = 0. Here some notations 

are used in the characteristic equation to put it in a simplified 

form and they are  ~ = −��� + α��, b = −��, ª =−��� + �� + �� + ���, d = −��� + ���. Further, it can be 

observed that the expressions of ~, ©, ª and 9 are all negative 

quantities. 

The characteristic equation can be split into two parts 

as  �−α� − ���−�� − α� − ���−�� − ���−�� − �� − ��  =0 and �~ − ���© − ���ª − ���d − �� −�������	� α�⁄ ����	��� α�⁄ � = 0. 

It is expected that there are eight eigenvalues. The first 

part  �−α� − ���−�� − α� − ���−�� − ���−�� − �� −��  = 0 provides four eigenvalues as �m = −α�, �� =−��� + α��,  �6 =  −��, �� =  −��� + ��� . It is simple to 

observe that all the four eigenvalues  �m, ��, �6, ��are negative 

quantities. 

The remaining four eigenvalues  ��, ��, ��, �� are the 

solutions of the equation �~ − ���© − ���ª − ���d − �� −�������	� α�⁄ ����	��� α�⁄ � = 0 . Equivalently, the 

foregoing equation can be expressed as  �� − �~ + © + ª +9��6 + �~© + ©ª + ©9 + ª9��� − �~ª + ~9 + ~ª9 + ©ª9 +~©ª + ~©9�� +S~©ª9 − �������	� α�⁄ ����	��� α�⁄ �T = 0. But, finding 

expressions for the eigenvalue is tedious. In fact it is not 

needed to know the exact eigenvalues but their signs i.e., 
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whether they are positives or negative. 

Routh-Hurwitz criterion is a simple procedure which helps 

to know the signs of eigenvalues without exactly solving the 

characteristic equation. This criterion is now followed here to 

know the signs of the remaining four eigenvalues. On 

comparing the equation  �� − �~ + © + ª + 9��6 +�~© + ©ª + ©9 + ª9��� − �~ª + ~9 + ~ª9 + ©ª9 + ~©ª +~©9�� + S~©ª9 − �������	� α�⁄ ����	��� α�⁄ �T =0 with the standard form  ~%�� + ~m�6 + ~��� +~6� +~� =0 the coefficients  ~_  are ~% = 1,  ~m = −�~ + © + ª +9�,  ~� = �~© + ©ª + ©9 + ª9�, ~6 = −�~ª + ~9 + ~ª9 +©ª9 + ~©ª + ~©9� 

and ~� =S~©ª9 − �������	� α�⁄ ����	��� α�⁄ �T. 
Now the Hurwitz matrix is given by 

xyy
yyz
~m ~% 0 0~6 ~� ~m ~%0 ~� ~6 ~�0 0 0 ~�{||

||} 
Hence, its principal diagonal minors can be expressed as 

∆m=~m =− �~ + © + ª + 9� > 0, 
∆�= ­~m ~%~6 ~�­ = ® −�~ + © + ª + 9� 1−�~ª + ~9 + ~ª9 + ©ª9 + ~©ª + ~©9� �~© + ©ª + ©9 + ª9�® 

= −�©9� + ª9� + ~©ª + ©ª� + 2©ª9 + ª�9 + ~©� + ©�ª + ©�9 + ~�© + ~©9� > 0, 
∆6= ¯~m ~% 0~6 ~� ~m0 ~� ~6¯ = ~m~�~6 − ~m�~� − ~%�~6�� =  ~m~�~6 − �~m�~� + ~6�� > 0 if ~m~�~6 > �~m�~� + ~6�� 

 ∆�=~� =°~©ª9 − ���� ���	�α� � ���	���α� �± = � ~©ª9���� + �� + ~©ª9���� + �� S1 − �%�T� > 0 a� �% < 1 

Clearly the two minors  ∆m and  ∆� are unconditionally 

positives. However, the remaining minors ∆6 and   ∆� are 

positives if the conditions  ~m~�~6 > �~m�~� + ~6��and  �% <1 are satisfied respectively. That is, the 

eigenvalues  ��, ��, ��, �� are negatives provided that the 

conditions ~m~�~6 > �~m�~� + ~6�� and �% < 1 are satisfied. 

Therefore, it can be concluded that the disease free – 

equilibrium E% is locally asymptotically stable if �% < 1 and 

unstable if �% > 1. 

5. Numerical Simulations 

To investigate the role played by epidemiological 

parameters in the model dynamics, the numerical simulations 

are carried out using DEDiscover 2.6.4 software. The 

parameters used, their estimated values and appropriate 

sources are given in tables 3 and 4. Different values 

i.e.,  �% < 1 and  �% > 1 are obtained for the reproduction 

number�% using the parametric values given in the former 

and the latter tables. Numerical simulation results are given 

in the following figures together with detailed descriptions. 

Using parametric values given in Table 3 together with the 

initial conditions ��%  = 120,  ��%  = 60, ��%  = 20, ��%  =10, ��% = 18, ��% = 160, ��%  = 80 and ��% = 150 a 

simulation study is conducted and the results are given in 

Figure 2. Further, using these parametric values the 

reproduction number is computed and found that its value to 

be �% = 0.00251 . Here it can be observed that  �% <1 showing that the disease free eqilibrium point is stable. 

Table 3. Parametric values for which �% < 1. 

Parameter Value Source / Reference 	� 1.0000 Assumed/Estimated �� 0.0262 [12] �� 0.011 [12] α� 0.0043 Assumed/Estimated �� 0.5 Assumed/Estimated �� 0.5 Assumed/Estimated �� 0.143 [12] �� 0.5 Assumed/Estimated �� 0.05 Assumed/Estimated 	� 0.071 [12] �� 0.168 [12] �� 1.0000 Assumed/Estimated �� 0.091 [12] 
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Figure 2. Dynamics both human and mosquito populations with parametric values of Table 3. 

In Figure 2, the fractions of the 

populations  �� , �� , ��, �� , ��,  �� , �� and  �� are plotted 

versus time. The susceptible populations will initially 

decreases with time and then increases and the fractions of 

infected human populations decrease. More over because of 

treatment the recovered human population tremendously 

increases and also the susceptible and infected mosquito 

population decreases over time. 

 

Figure 3. Dynamics human populations with parametric values of Table 3. 

Figure 3 is a phase portrait illustrating the changes in the 

five state variables of the malaria mathematical model. It 

shows the dynamics with time of susceptible, exposed, 

infectious, treatment and recovered human populations. 
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Table 4. Parametric values for which �% ' 1. 

Parameter Values Reference 

	� 1.0000 Assumed/Estimated 

�� 0.0262 [12] 

�� 0.001 Assumed/Estimated 

α� 0.0043 Assumed/Estimated 

�� 0.5 Assumed/Estimated 

�� 0.001 Assumed/Estimated 

�� 0.005 Assumed/Estimated 

�� 0.001 Assumed/Estimated 

�� 0.05 Assumed/Estimated 

	� 10 Assumed/Estimated 

�� 0.5 Assumed/Estimated 

�� 1.0000 Assumed/Estimated 

Parameter Values Reference 

�� 0.091 [12] 

Assuming the parameter values of Table 4 together with 

the initial conditions��%  � 120, ��%  � 60, ��%  � 20, ��%  �
10, ��% � 18, ��% � 160, ��%  � 80 and ��% � 150 a 

simulation study is conducted and the results are as shown in 

Figure 2. 

By using the parameter values of Table 4, the reproduction 

number is calculated and evaluated to be  �% � 51.70145 . 

Here it can be observed that �% ' 1showing that the disease 

free eqilibrium point is unstable and thus the disease persists 

in the population. 

 

Figure 4. Dynamics of both human and mosquito populations with parametric values of Table 4. 

In Figure 4, the fractions of the populations 

�� , ��, �� , �� , ��, ��, ��  and ��  are plotted versus time. It is 

shown that the treatment rate of the infected human population 

decreases the infected human populations over time. 

6. Conclusion 

In this paper, a model for malaria is formulated taking into 

account the compartmentalization of both the human and 

mosquito populations. An SEITRS model with the inclusion 

of treatment for infected human is formulated for humans 

and similarly an SEI model is formulated for mosquitoes. 

Constant recruitment rates for both human and mosquito 

populations are considered. Dynamics of mosquito 

population is studied along with that of human populations 

since the mosquito population determines to a large extent 

whether a malaria outbreak will occur or not. 

Further, it is shown that the solution of the model is both 

positive and bounded. Hence, it is interpreted that the model 

equations are mathematically and epidemiologically well 

posed. The disease free equilibrium theory is applied to study 

the stability analysis. In particular, the stability properties 

were investigated by paying more attention to the basic 

reproduction number. 

In this study the treatment to infected humans is 

incorporated in already existing SEIRS model and developed 

an improved SEITRS model. This improvement remains as a 

reasonable contribution for controlling malaria disease. From 

the numerical results, it is observed that treatment to infected 

human population has a strong control over the spread of 

malaria disease. 

Moreover, the dynamics of an SEITRS model is studied 

and applied to malaria transmission between human and 

mosquito populations. The basic reproduction number is 

derived. Further it is shown that a disease – free 

equilibrium exists and its stability condition  �% Z 1 is 

proved. 

The analysis shows that if the reproduction number is 

less than one unit then the DFE is stable. This implies that 

only susceptible human population is present and all the 
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other human populations reduce to zero. Thus, it can be 

concluded that the disease dies out as shown in Figure 2. 

On the other hand, if the reproduction number is greater 

than one unit then the DFE is unstable. This fact has been 

verified by numerical simulation and the result is illustrated 

in Figure 4. 

Clearly, the numerical simulation study supports that the 

DFE is locally asymptotically stable whenever the 

reproduction number is less than one unit. It is also noticed 

that in order to reduce the basic reproduction number below 

one, it is very necessary to give a focus on the reduction of 

the rate of infected human population through treatment. 

Hence, for reduction of malaria infection it is recommended 

that humans must be tested for the disease and provide 

sufficient treatment. 
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