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Abstract: We have formulated a mathematical model to investigate the transmission dynamics of the current novel COVID-19 

disease outbreak in Ghana. The coronavirus originated from Wuhan,, China. Majority of people who contact the disease 

experience mild to moderate respiratory illness and recover. The elderly and people with underlying health issues experience 

severe complications. A plethora of measures have been taken by the government of Ghana to curtail the disease. The model 

considers, among other things, quarantining and testing of immigrants, contact tracing and isolation in the form of quarantining 

or hospitalization, as control measures in mitigating the spread of the pandemic. Our model considers the following classes: 

susceptible, exposed, infectious, quarantine, treatment and recovery class. The steady-state solution was calculated and the basic 

reproduction number for this model calculated and used as a threshold to determine the asymptotic behaviour of the model. Our 

analytical and numerical results show a close dependence of the basic reproductive number on epidemic parameters. The aim of 

this paper was to incorporate the various intervention strategies into the model and ascertain their impact on COVID-19. Some of 

the methods employed in the analysis include the Next Generation Matrix and the Jacobian Matrix. Our simulations results 

correlate well with data and indicate that early quarantine and a high quarantine rate are crucial to the control of COVID-19. Thus, 

current preventative measures, such as isolation, contact tracing and treatment are, indeed, critical components in the control of 

COVID-19 until appropriate cure or vaccine is found. 
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1. Introduction 

COVID-19 is an infectious disease caused by a newly 

discovered coronavirus. This novel virus appears to have 

firstly reported in Wuhan, China late 2019. Ghana recorded its 

first case of coronavirus in March 2020 from an immigrant 

who visited the country. COVID-19 spreads from 

person-to-person and has grown to become a global pandemic. 

According to World Health Organization (WHO), most people 

infected with the COVID-19 virus experience mild to 

moderate respiratory illness and recover without requiring 

special treatment [1]. Adults and people with medical 

conditions, such as cardiovascular disease, diabetes, chronic 

respiratory disease, and cancer are more likely to develop 

serious complications after contracting the disease [1]. The 

array of symptoms of the novel coronavirus includes fever, 

muscle pain, cough, headaches, shortness of breath or 

difficulty in breathing and chills [2]. 

The rapid growth in the number of COVID-19 cases in 

China, Italy, Spain, USA, and Britain set up a strong alarm to 

the Ghana government and public health authorities. 

Following measures taken by other countries, the President of 

the Republic of Ghana initiated broadcasts and put in place 

drastic measures, such as closure of Ghana’s borders and 

partial lockdown of Accra and Kumasi metropolitan areas in a 

bid to curtail the spread of the disease in March 2020 [3]. 

Newspapers, radio, and TV stations campaigned to educate 

the public on COVID-19 spread and prevention, although 

enforcing social distancing, especially in marketplaces remain 

a challenge. 

With the advent of an epidemic, the first and foremost 
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question that arises in our mind is ‘how do we, as a community, 

protect ourselves against the epidemic?’ In fact, strict 

adherence to the infection control guidelines is essential to 

prevent the transmission of infection among the population in 

a community. Transmission of infection can be controlled by 

the identification and diagnosis of persons who may have 

encountered an infected person, called contact tracing and 

through the removal of infective individuals from the general 

population. Contact tracing and isolation strategies are 

critically important tools to control the outbreak of epidemics 

like Coronavirus [3]. 

The fundamental dilemma associated with the 

implementation of isolation and quarantine is how to 

predict the population level efficacy of individual 

quarantine: Which and how many individuals need to be 

quarantined to achieve effective control at the population 

level? [4]. Quarantine, defined loosely as the temporary 

removal (from their immediate abode or the general 

population) of people suspected of being exposed to a 

communicable disease, has historically been used as an 

effective basic public health control measure to prevent the 

spread of infectious diseases [5]. There are numerous issues 

pertaining to the logistic of the actual implementation of 

quarantine as a control strategy, such as who should be 

quarantined and for how long suspected people should be in 

quarantine (these have major socio-economic and public 

health implications) [6]. 

To gain insight into the mechanism of spread of 

COVID-19, numerous mathematical modelling techniques, 

typically of the form of deterministic systems of nonlinear 

differential equations, have been developed to study the 

transmission dynamics and control of COVID-19. Wu et al. 

[8], proposed a SEIR model to describe the transmission 

dynamics and fitted data from December 31, 2019 to January 

28, 2020 in China. Pengpeng et al. [9], further established a 

new SEIR propagation dynamics model, which considered 

the weak transmission ability of the incubation period, the 

variation of the incubation period length, and the 

government intervention measures to track and isolate 

comprehensively. This model was further developed by Yang 

et al. [10] by including a new compartment for the 

concentration of the coronavirus in the environmental 

reservoir. Furthermore, Chang et al. [11], proposed an 

SIHRS model which incorporated awareness of media 

coverage, which plays an important role in preventing and 

controlling infectious diseases. 

The spread of COVID-19 in Ghana, albeit on the low side, it 

is still significant compared to the etiology of the disease in 

other countries (see Figures 1 and 2). 

To gain insight into the mechanism of spread of the disease, 

we have developed and analyzed a mathematical model. The 

model addresses the dynamics of coronavirus disease in a 

homogeneous population with immigration from outside into 

the susceptible Ghanaian population. The model addresses the 

impact of isolation, contact tracing and temporal immunity 

scenarios. We develop the full model system in Section 2 and 

analyse the model system in Section 3. In Section 4, we 

perform stability analysis and present a derivation of the basic 

reproductive number, a crucial parameter, which allows us to 

make more informed predictions about the severity of the 

disease. We present the numerical simulations based upon the 

Runge-Kutta method in Section 5, and we conclude by making 

some recommendations, based upon the model predictions in 

the Discussions and Conclusions in Section 6. 

 

Figure 1. Number of reported cases in Ghana, the orange stem denotes the new cases and the blue stem denotes the total cases. 
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Figure 2. Cumulative total active cases. Circles (in orange) denote the fitted data and solid line (in blue) denotes the simulation result. 

2. Model Design 

Following the basic idea and structure of mathematical 

modeling in epidemiology [8, 12], our model describes the 

dynamics of six sub-populations (classes), namely susceptible, 

exposed, infective, quarantined, treated, and recovered 

individuals. We assume that only a fraction of the total newly 

infected contacts, are elucidated and that those individuals are 

isolated. The population is subdivided into the following six 

classes: 

Susceptible S(t): members of the population who may 

become infected. 

Exposed E(t): members of population infected by the 

coronavirus but are in the incubation period and are 

asymptomatic. The population exposed to COVID-19 is 

subtly infectious (either without infectivity or with very low 

infectivity). 

Infectives I(t): members of the population who are 

infectious and symptomatic with strong infectivity but have 

not yet been quarantined. 

Quarantined Q(t): members of the population who have 

been infected, and have not been diagnosed, but have been 

quarantined. It includes individual from contact tracing. 

Treatment T(t): members of the population who are 

infective, have been diagnosed and have been treated. 

Recovered R(t): members of the population who have 

recovered from the disease with partial immunity against 

reinfection. 

The schematic representation of the individual flow 

between the different classes is shown in Figure 3. 

 

Figure 3. Compartmental model of coronavirus disease with contact tracing and isolation. 
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The variables S(t), E(t), I(t), Q(t), T(t), and R(t) are the 

numbers of the individuals in the six classes at time t, 

respectively. We assume that the epidemic process operates on 

a much faster time scale than natural deaths, and assume that 

the only deaths are due to disease. In Ghana, at present the 

number of exposed, infective, quarantined, diagnosed, and 

recovered classes appear to be small compared to the 

susceptible population. The susceptible group is increased 

through immigration rate of , with a proportion  being 

the rate at which persons enter the quarantined group (Q) [17]. 

Susceptible group get infected through contact with infected 

persons with force of infection  and through government 

intervention some are isolated at a rate of . A person 

infected by coronavirus enters the exposed class and is in the 

incubation period. The incubation period lasts 2 to 14 days 

[13]. Some exposed individuals will enter the quarantined 

class at a rate of , because of contact tracing. The remaining 

exposed individuals will enter the infective class at a rate of 

. People in the quarantined and infective classes will enter 

the treatment class at a rate of  and  respectively, after 

obvious symptoms of COVID-19 appear and they are 

diagnosed eventually. Diagnosed group enters recovered class 

at a rate of  or die of the infection at a rate of . People 

with weakened immune systems might not develop full 

immunity after infection and be more likely to be reinfected 

with the same coronavirus. It is assumed that the recovered 

population again enters the susceptible population but with 

low risk of infection at the rate . 

From the model design and the schematic flow diagram 

(Figure 3) the model equations become: 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1
dS t

R t t S t
dt

dE t
t S t E t

dt

dI t
E t I t

dt

dQ t
E t Q t

dt

dT t
I t Q t T t

dt

dR t
T t R t

dt

π ξ λ α

λ ε θ

ε φ δ

π θ σ

φ σ ρ δ

ρ ξ


= − Λ + − +




= − +


 = − +


 = Λ + −

 = + − +



= −


  (1) 

where  is the infection rate is given by the following 

relationship: 

( ) ( ) ( )( )t E t I tλ β κ= +               (2) 

The model system (Equation 1) is able to encapsulate most of 

the salient features of the disease etiology in Ghana. Below, we 

provide analysis of the model and explore some ramifications. 

3. Qualitative Analysis of Coronavirus 

Model 

To find the positivity and boundedness of solutions 

throughout the work, we assume that the initial conditions of 

system (1) are non-negative: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0 andS E I Q T R N t S t E t I t Q t T t R t≥ ≥ ≥ ≥ ≥ ≥ = + + + + +      (3) 

Our first lemma shows that the considered model (1) – (3) is biologically meaningful. 

Lemma 1. The solutions ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,S t E t I t Q t T t R t  of system (1) are non-negative for all 0t ≥  with non-negative 

initial conditions (3) in 6R+ . 

Proof. We have 

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( )

( )
( )

( )

( )
( )

( ) ( )

( )
( )

( )

1 0,

0,

0,

0,

0,

0.

S

E

I

Q

T

R

dS t
R t

dt

dE t
t S t

dt

dI t
E t

dt

dQ t
E t

dt

dT t
I t Q t

dt

dR t
T t

dt

ψ

ψ

ψ

ψ

ψ

ψ

π ξ

λ

ε

π θ

φ σ

ρ


= − Λ + ≥





= ≥


 = ≥


 = Λ + ≥


 = + ≥



 = ≥



 

π

α
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where  and . Therefore, due to Lemma 2 in [14], any solution of 

system (1) is such that  for . 

Lemma 2 shows that it is enough to consider the dynamics of the flow generated by (1) – (3) in a certain region . 

Lemma 2. Let 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }6, , , , , 0S E I Q T R S t E t I t Q t T t R t+Ω = ∈ℜ ≤ + + + + + ≤ Λ                   (4) 

then the region  is positively invariant for model (1) with non-negative initial conditions (3) in . 

Proof. Adding the six equations of system (1) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )N t S t E t I t Q t T t R t S t I t T tσ δ′ ′ ′ ′ ′ ′ ′= + + + + + = Λ − − + ≤ Λ
 

For this reason, equation (3) defines the biologically 

feasible region for the population. From (1) and (3), we know 

that  is bounded for all t ≥ 0. Therefore, every solution of 

system (1) with initial conditions in Ω remains in Ω for all t ≥ 

0. This is shown to be positively invariant and globally 

attracting in  with respect to system equation (1). 

4. Equilibrium Points and Basic 

Reproduction Number 

The disease – free equilibrium (DFE) of system equation (1) 

is given by 

( ) ( )2 20 0 0 0 0 0 0

2 2 2

, , , , , ,0,0, , ,
a a

E S E I Q T R
a a a

ρπ π π π ρπ
α σ ξ

 Λ + − Λ Λ Λ= =   
 

                           (5) 

Next, we compute the basic reproduction number R0. 

Proposition 1: (Basic reproduction number of system of 

Equations (1)). The basic reproduction number of model (1) is 

given by 

( )( )2 2 1
0

2 1 0

a a a
R

a a a

β ρπ π κ ε
α

Λ + − +
=           (6) 

where 

 

Proof. Let consider +that  is the rate of appearance of 

new infections in the compartment associated with index i, 

 is the rate of transfer of infections into the compartment 

associated with index i. 

From system Equations (1), we write down the equations 

with infection, ,  and . This leads to the system 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

dE t
t S t E t

dt

dI t
E t I t

dt

dT t
I t Q t T t

dt

λ ε θ

ε φ δ

φ σ ρ δ


= − +


 = − +



= + − +


     (7) 

In this way, the matrices , and , associated with 

model (7), are given by 

( )
( ) ( ) ( )( )

( )
( )

( ) ( )
( ) ( ) ( )

0

1

2

0   and   

0

i i

S t E t I t a E t

t t a I t E t

a T t I t Q t

β κ

ε
φ σ

 +  
   = = −   
   − −   

F V  

Partial differentiation of , and , with respect to ,  and  gives: 

( )
( )

( )
0

1

2

( ) 0 0 0

0 0 0    and    V 0

0 0 0 0

S t S t a

F t t a

a

βκ β
ε

φ

   
   = = −   
   −  

 

In the disease-free equilibrium  defined by (4), we obtain the matrices  and  given by   E
0

  
F

0   
V

0
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 and  

The inverse of 0V  is calculated as 

0

1
0

0 1 1

0 1 2 1 2 2

1
0 0

1
0

1

a

V
a a a

a a a a a a

ε

εφ φ

−

 
 
 
 

=  
 
 
 
  

 

then 

( ) ( ) ( )2 2 2 2 2 2

2 0 2 1 0 2 1

0 0

0

0 0 0

0 0 0

a a a a a a

a a a a a a a

F V

βκ π πρ β π πρ ε β π πρ
α α α

−

 Λ − − Λ − − Λ − −
− − − 
 
 =
 
 
 
 

 

The basic reproduction number of model (1) which is the 

spectral radius of  is given by 

( )( )2 2 1
0

2 1 0

a a a
R

a a a

β ρπ π κ ε
α

Λ + − +
=  

Now we prove the existence of an endemic equilibrium 

when  given by (6) is greater than one. 

Proposition 2: (Endemic equilibrium). If the basic 

reproduction number (6) is such that , then the model (1) 

has an endemic equilibrium given by 

( )1 * * * * * *, , , , ,E S E I Q T R=             (8) 

where 

( )

( )

( )

( )( )

( ) ( )( )

0 1 2 2*

1 2 2*

2 2*

1 2 0 0*

1 0 0*

* *

1

a a a a
S

D
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E

D

a a
I

D

a a a a
Q

D

a a a
T

D

R T

ρπ π

λ ρπ π

ελ ρπ π

φλ φλπ λπ απ πρφλε
σ

φλ φλπ λπ απ εφλ π

ρ
ξ

 Λ + −
=


 Λ + −

=

 Λ + −

=

 Λ − − + − =



Λ − − + + −
=


 =


ɶ

ɶ

ɶ

ɶ

ɶ

 

and  

Proof. To obtain the Endemic Equilibrium

, we let . It 

follows, by solving the equations in (1) at steady-state that 

( )

( )

( )

( )( )
( )

0 1 2 2*

2 1 0 2 1 0 1

1 2 2*

2 1 0 2 1 0 1

2 2*

2 1 0 2 1 0 1

1 2 0 0*

2 1 0 2 1 0 1

1 0*

a a a a
S

a a a a a a a

a a a
E

a a a a a a a

a a
I

a a a a a a a

a a a a
Q

a a a a a a a

a a
T

ρπ π
α λ ρφελ ρφλ

λ ρπ π
α λ ρφελ ρφλ
ελ ρπ π
α λ ρφελ ρφλ

φλ φλπ λπ απ πρφλε
σ α λ ρφελ ρφλ

φλ φλπ λπ

Λ + −
=

− − −

Λ + −
=

− − −
Λ + −

=
− − −

Λ − − + −
=

− − −

Λ − −
=

( ) ( )( )0

2 1 0 2 1 0 1

* *

1a

a a a a a a a

R T

απ εφλ π
α λ ρφελ ρφλ

ρ
ξ















 + + −

 − − −

 =


 (9) 

Substituting  and  in (9) into  

gives the following quadratic equation (in terms of ): 

( )2
* *

0 1 0λ λΨ + Ψ =              (10) 

with 

and  

  
R

0

  E
*

  I
*
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By solving for in (10) and substituting the positive 

values of  into the expressions in (9) the endemic equilibria 

of the model (1) can then be obtained. It should be noted that 

0 0Ψ >  and 1 0Ψ <  whenever 0 1R > . Hence, the 

following result is established. 

Existence and Stability of Equilibrium Solutions 

Theorem 1: (Stability of the DFE (5)). The disease-free 

equilibrium  of model (1) is locally asymptotic stable, if 

; 

Proof. We study the stability of the disease-free equilibrium 

by using the linearization method presented in [15]. The 

Jacobian matrix of the system (1) in a point  

is given by: 

( )
( ) 1

1

2

0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

E I S S

E I S a S

a
J

a

β κ α β κ β ξ
β κ β β

ε
θ σ

φ σ
ρ ξ

 − + − − −
 + − 
 −

=  
− 

 −
 

−  

                            (11) 

At the disease-free equilibrium
( )2 20

2 2 2

,0,0, , ,
a a

E
a a a

ρπ π π π ρπ
α σ ξ

 Λ + − Λ Λ Λ=   
 

, the jacobian matrix will give as 

( ) ( )

( ) ( )
0

2 2 2 2

2 2

2 2 2 2
1

2 2

1

2

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

E

a a a a

a a

a a a a
a

a a
J

a

a

βκ π ρπ β π ρπ
α ξ

α α
βκ π ρπ βκ ρπ π

α α
ε
θ σ

φ σ
ρ ξ

 Λ − − Λ − −
− 
 
 Λ − − Λ + −
 −
 =  −
 
 − 
 − 
 − 

                   (12) 

Therefore, the eigenvalues are ,  and , where 

2

1

2
K

a α
= , ( ) ( )2 2 2 0 1B a a a a aβκ π πρ α= Λ − − + + , 

( )
( )( ) ( )

( ) ( )

2 2 2 2 2 2 2 2 2 2
2 2 2 2 2

2
2 0 1 2 1 0

2 2 2 2 2 2
2 2 2 2 1 0 0 1

2 2 2

2 1 2

4 2

C a a a a a

a a a a a a

a a a a a a a a

β κ π ρπ ρ π ρπ π

βκα π ρπ

βαε ρπ π α

= Λ + + + − −

 + Λ − − + −
 

+ Λ + − + + +

 

The first five eigenvalues are all negative, but we do not 

know whether ( )K B C− −  is negative. Imposing 

negativity condition leads to . 

This implies, 

2 0B C− >                   (13) 

Simplifying equation (13) further leads to 

 

Dividing through by the positive expression  

yields 

 

Multiplying through by -1 and simplifying gives 

 

Hence the disease-free equilibrium is asymptotically stable 

provided . 

5. Numerical Simulations 

In this section, we carry out some numerical simulations for 

  E
0
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the dynamics of the current COVID-19 outbreak disease 

model in Ghana. Although the disease is not yet well 

understood, much data has been collected during the 

COVID-19 epidemic. Based on the cumulative number of 

confirmed cases in Ghana from March 23, 2020 to April 24, 

2020 [3] in shown graphically in Figures 1 and 2. 

To illustrate the feasibility of the obtained results in our 

model system (Equation 1), we choose the following initial 

population classes, (t=0),  

respectively as (2.45x1005, 100, 2, 0, 0, 0). The parameter 

values used for the model simulations are shown in Table 1. 

Based upon the parameter choices, the basic reproduction 

number becomes 0 0.5116 1R = < . By Theorem 1 the 

disease-free equilibrium is asymptotically stable, and the 

disease dies out (Figures 4-5, see also Figures 1-2). 

 

Figure 4. Simulation result for the outbreak in Ghana using the constant transmission rates given in the Table 1. 

 

Figure 5. The influence of contact tracing for quarantine. 
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Table 1. Description and baseline values of model parameters. 

Par. Description Baseline Values Reference 

 Immigrant migration rate 100/day Assumed 

 Fraction of recruited immigrant 0.6/day Assumed 

 Isolation rate due to government intervention 0.2/day Assumed 

 Transmission coefficient 6.64x10-03/day Estimated 

 Relative infectiousness of Individuals with a Latent Infection 0.328/day Assumed 

 Progression rate from exposed to infectious class 0.003/day Assumed 

 Contact tracing rate for exposed individuals 0.2 – 1.0 per day Varied 

 Progression of infected persons in the quarantine class to treatment class 0.05 – 0.1 per day Varied 

 Rate of hospitalization of infectives 1/10 per day Assumed 

 Recovery rate 0.095/day Estimated 

 Per Capita Covid-19 induced death rate 0.03/day [13] 

 Per capita loss of immunity 0.0002 Assumed 

 

6. Discussion 

In this paper, we have presented a mathematical model to 

look into the current COVID-19 epidemic in Ghana. We 

developed a new SEIQTR model well suited for the 

characteristics of COVID-19 in Ghana. In the absence of 

vaccination, our model employs social distancing, 

quarantining of immigrants, contact tracing and 

hospitalization as measures for controlling the disease. In 

particular we included in the Quarantine class immigrants and 

suspected cases from contact tracing. Those who tested 

positive progressed into the treatment class or were 

hospitalized. 

The basic reproduction number, which describes the 

number of secondary infections produced by an infective, was 

calculated. Thus, if 0 1R < , Covid-19 dies out. This is highly 

desirable since Covid-19 is causing havoc in Ghana. On the 

other hand, 0 1R >  is indicative of an epidemic. Steady-state 

analysis was carried out on the model. The disease-free 

equilibrium is locally asymptotically stable provided 0 1R <  

and the endemic equilibrium exist, if 0 1R > . 

To mitigate the COVID-19 disease spread in Ghana, after 

carefully choosing parameters and the initial values, we 

carried out model simulations to illustrate COVID-19 disease 

transmission dynamics. Our simulation results correlate well 

with the raw data shown in Figure 2. The modelling, analysis 

and simulations in this paper form a simple, mathematical 

approach to the study of COVID-19 disease transmission in 

Ghana. 

It is often very difficult to validate epidemiological 

simulation models due to the lack of reliable field data. 

However, Ministry of Health Ghana (MOH) has constantly 

reported the COVID-19 cases in Ghana since the first case was 

confirmed in Ghana. The COVID-19 epidemic data was 

obtained from MOH’s website [3]. Figure 2 shows the number 

of people infected with COVID-19 virus in Ghana verses the 

cumulative total active cases. The trend of the raw data is 

succinctly expressed by the essential features of our 

COVID-19 model proposed in this paper. Thus, our model, 

with an ample degree of confidence, can be used to study the 

dynamics of the disease in Ghana. 

In Figure 1, the number of confirmed new cases of 

COVID-19 in Ghana appears to grow and cumulative number 

continue to increase (Figure 2), albeit slowly. This must be a 

welcoming news for Ghana, but we cannot be over-optimistic. 

Although social intervention strategies are working, traders in 

the marketplaces still pose a problem. For better results, social 

distancing and the use of nose mask must be made compulsory. 

Contact tracing should be enhanced and all immigrants 

quarantined and tested. Figure 4 show that the number of 

exposed individual and infectives will continue to increase 

and attain a peak and then gradually become endemic. Figure 

5 shows the simulated results in different contact tracing ratios. 

We can see that the spread of novel COVID-19 can be 

effective controlled when quarantine rate larger than 0.2. 

When 0.2σ = , the number of quarantine population reach 

the peak value 70,000 at week 8 and is smaller than other 

situations. 

7. Conclusion 

Our model is simple, yet it encapsulates the salient features 

of COVID-19 transmission dynamics, see for example, [16], 

where another simple model was used to describe tuberculosis 

disease dynamics. We included in the model the control 

measures adopted by the president of Ghana to fight this 

pandemic. This paper does not consider cases of COVID-19 

infection to healthcare and frontline workers who contracted 

the disease in their line of duty. These healthcare workers have 

close contact with infected persons and form a high-risk group. 

How to include COVID-19 transmission in health care 

workers in our model is an important question and it would be 

important to learn what new phenomena might appear if these 

factors were considered. 

Given the current trend of the disease progression and the 

stark prediction by WHO, the disease will continue to persist 

and become endemic. The results of our study indicate that 

Ghana must be prepared to fight the infectious disease much 

longer. The most important thing that can aid our effort at 

combating COVID-19 is testing. Ghana must be able to test a 

higher proportion of the population. Given the deficit in our 

budget, help will be needed from individuals, companies, and 

donor countries. In addition, attempt should be made at 

finding a vaccine or a cure. The latter will play a pivotal role in 

eliminating the disease. 
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