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Abstract: Malaria is one of the major causes of deaths and ill health in endemic regions of sub-Saharan Africa and beyond 

despite efforts made to prevent and control its spread. Epidemiological models on how malaria is spread have made a 

substantial contribution on the understanding of disease changing aspects. Previous researchers have used Susceptible –

Exposed-Infectious-Recovered (SEIR) model to explain how malaria is spread using ordinary differential equations. In this 

paper we develop mathematical SEIR model to define the dynamics of the spread of malaria using Delay differential equations 

with four control measures such as long lasting treated insecticides bed nets, intermittent preventive treatment of malaria in 

pregnant women (IPTP), intermittent preventive treatment of malaria in infancy (IPTI) and indoor residual spraying. The 

model is analyzed and reproduction number derived using next generation matrix method and its stability is checked by 

Jacobean matrix. Positivity of solutions and boundedness of the model is proved. We show that the disease free equilibrium is 

locally asymptotically stable if R0<1 (R0 – reproduction number) and is unstable if R0>1. Numerical simulation shows that, 

with proper treatment and control measures put in place the disease is controlled. 
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1. Introduction 

Malaria is one of the most pandemic disease that remains 

arguably the greatest threat in our society and has remained 

the main cause of deaths in Africa and many regions of the 

world. Malaria was a major bottleneck in military camps in 

the United States where they initiated malaria campaigns to 

control the menace. In 2015 World Health organization 

(WHO) estimate on the cases of malaria to be 214 million 

resulting in 438,000 deaths, majority of these were from 

Africa. Sub-Saharan Africa continues to exhibit a 

considerably high number of epidemics of malaria which 

results to many deaths. Furthermore, WHO (2016) estimates 

that there were 216 million quantifiable cases of malaria and 

445,000 people perished of whom 306,000 were children 

under 5 years and were mainly from Africa [1, 2]. 

Malaria is transmitted by Plasmodium parasite. One gets 

malaria by being bitten by infected female anopheles 

mosquito. The mosquito must have been infected from blood 

meal of infected persons. Blood of infected person has 

microscopic malarial parasite that can be passed onto a 

mosquito when it bites such an individual. The malarial 

parasite incubates for about seven days after which it 

becomes infectious and if a mosquito bites a new individual 

again the parasite from the blood meal will mix with 

mosquito’s saliva and can be transmittable to the person 

being bitten. Malaria symptoms appears within 9-14 days. 

The most common symptoms are headache, fever and 

vomiting. Other ways through which malaria can be spread is 

by blood transfusion or sharing used needles or syringes of 

the blood which is contaminated. Also delivery or before 

delivery of the new born baby, the mother may pass over the 

disease to the baby. Severe malaria can lead to cerebral 

malaria, which is associated with unconsciousness, seizures, 

or other neurologic anomalies. Risks associated with malaria 

in expectant mothers include maternal anaemia, low weight 

in infants, immature delivery and increased infant and 
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maternal deaths [14]. The prevalence of malaria has been on 

the rise owing to malaria parasite developing resistance to 

drugs, mosquito-insecticide resistance and weak malaria 

intervention measures [3, 9]. This therefore warrants efficient 

and effective control measures on the spread of malaria 

through mathematical modelling. SEIR differential model for 

humans and SEI for mosquitoes was developed to study the 

dynamics of spread of malaria and incorporate Preventive 

measures. For instance, intermittent preventive treatment of 

malaria in pregnant mothers, Long- Lasting Insecticides 

Treated Nets (LLINS), indoor residual spraying (IRS). 

2. Review of Related Literature 

Jessica [7] studied malaria spread dynamics for humans 

and mosquito populations by considering vectorial 

transmission, vertical transmission of disease and a force of 

infection which measure the influence that occurs in the 

disease transmission rate which an infected human is 

introduced into mosquito population. The study examine a 

SEIR model for humans and SIR model for mosquitoes and 

fail to incorporate preventive and control measures to reduce 

malaria prevalence. In the analysis revealed the existence of 

three steady states, the disease free equilibrium and two 

endemic equilibrium and that when �� < 1, then disease is 

controlled and when �� > 1, the disease persists. In the study 

ordinary differential equations were used, which in this paper 

is addressed by introducing delay differential equations to 

cater for latency period that take place between when a 

mosquito bites and human becoming infected. 

Sunita [5], Studied SEIR model for human and SI model 

for mosquito population. SEIR model took into account new 

immigrants in the population who are susceptible, exposed 

and infective. 

Impressed by Sunita’s work [5], Nisha [12] analysed the 

steadiness of SEIR model for malaria with infectious 

migrants but failed to carry out simulation and sensitivity 

analysis of the given model which was necessary so as to 

understand the effect of infective immigrants on the spread of 

malaria in a population. Similar studies were carried by 

Mojeeb [9] who used a SEIR mathematical model using 

ordinary differential equations with four control measures 

such as reducing contact rate between human and mosquito’s, 

reducing the infection rate between humans, use of active 

malaria drugs and treated mosquito nets. 

Ephraim [10] studied the dynamics of several species and 

strains of malaria. In the model analyzed four species of the 

malaria parasite and found out that some species of the 

parasite have evolved into strains that are resistant to 

treatment, he made assumption that there was no immunity to 

disease. The model found out that all species or strains 

persist for some time for the reproduction number greater 

than one, however the species or strain with the highest 

reproduction number eventually displace the others. In the 

model did not consider factors such as seasonality, age 

structure of humans and mosquitoes’ incubation period and 

spatial distribution. 

From the above literature malaria transmission was 

modelled using ordinary differential equation. In this paper 

we have modelled the spread of malaria using delay 

differential equations because of time lags between when a 

mosquito bites and one becoming sick. We have incorporated 

four control measures so as to control the spread. 

2.1. The Method of Solution 

In this section we formulate the model, generate the model 

equations, and find the reproduction number and study 

existence of disease free equilibrium and its stability. 

2.2. The Model 

In this model, the variables h and m denotes humans and 

mosquitoes population respectively and t is time. 

The SEIRS model is used to develop human population 

and the sum of the entire population is given as: 

��=	� + �� + �� + �� 

Where; subscripts h-represents human population 

N� − total	human	populatio� 

	�-susceptible humans 

��-exposed humans 

��-infectious humans 

��-recovered humans respectively. 

Similarly, Susceptible-Exposed-Infected (SEI) model is 

used to develop mosquito population and the Sum total of 

population is given as; 

��=	�+��+�� 

Where; subscript m-represents mosquito population 

N� − total	mosquito	population 

	�-susceptible mosquitoes 

��-exposed mosquitoes 

��-infectious mosquitoes 

Some of the assumptions of our model include; 
 !"	Mosquito will die after infection 
 !!"	The rate at which humans and mosquito enter the 

population and die are respectively given by ∧�	,  ∧�  and 

$�	, $�	, 
 !!!"  The rate at which human and mosquito die from 

disease induced deaths are respectively given as %�	,%� 
 !&"  Individuals are allowed to move from susceptible 

human population to the exposed human population at a rate 

which is proportional to both size of susceptible human 

population and infected mosquito population and inversely 

proportional to total human population 
'()*+

,)
 

 &"  Members of exposed class ( ��)  move to infected 

human class (��	 ) at a rate proportional to the number of 

individuals in the exposed class,.��, 
 &!" Individuals in the infected class move to recovered 

class at a rate proportional to the number of individuals in the 

infected class,	/��. 
 &!!"	Individuals in the recovered class move to susceptible 

class at a rate proportional to size of individuals in the 

recovered class,0��. 
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 &!!!"	 For mosquito population, susceptible mosquitoes 

move to exposed class at a rate 
1(+2)

,)
 

 !3"	Mosquitoes in the exposed class move to infectious 

class at the rate proportional to the size of individuals in the 

exposed mosquito population 4�� 

2.3. Model Formulation 

 
Figure 1. Human-mosquito flow diagram. 

2.4. Model Equations 

From the assumptions made, the following are equations from the model: 

56)

57
8 Λ� + 0�� −	$�	� −

'()*+:7;<):=;>)

,)

5?)

57
8

'()*+:7;<):=;>)

,)
− .��:@ − A) − $���:@ − A)

5*)

57
8 .��:@ − A) − :$� + %�)�� − /:1 � B-��:@ � A-5C	57 8 /:1 � B-��:@ � A- � $��� � 0��5(+57 8 � 1*):7;<-(+:=;>-,) 
 Λ� � :$� 
 %� 
 D3 
 EF-	�5?+57 8 1(+*):7;<-:=;>-,+ �4��:@ � A- � :$� 
 %� 
 D3 
 EF-��5*+57 8 4��:@ � A- � :$� 
 %� 
 D3 
 EF-�� GH

HH
HI
HHH
HJ

                                               (1) 

2.5. Positivity of Solutions 

The following theorem is used in determining positivity of 

our solutions. 

Theorem 

Let the initial data be 

K:	�:0-, 	�:0- M 0, :��:0-, ��:0-, ��:0-, ��:0-, ��:0-N 
Then the solution K	�, �� , �� , ��, 	�, �� , ��N:@- 
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Of the system is non-negative for all t	M 0 

Proof 

From the system of equation (1) in the model 

O	�

O@
8 Λ� + 0�� − $�	� − P	���:@ − A-:1 − 3-��  

≥ −$�	� − P	���:@ − A-:1 − 3-��  

5()57 ≥ −:$� + '*+:7;<-:=;>-,) -	�          (2) 

Using separation of variables and integrating both sides 

Q 1	� O	� ≥ −QR$� + P��:@ − A-:1 − 3-�� SO@ 

T�	� ≥ −:$� + P	���:@ − A-:1 − 3-�� + U 

	�:@- = V;:$� + P��:@ − A-:1 − 3-@ × VX       (3) 

Let VX = D 	�:@- = V;:$� + P��:@ − A-:1 − 3-@ × D 	�:@- = DV;:$� + P��:@ − A-:1 − 3-@ (4) 

When @ = 0, 	�:0- ≥ Y 	�:@- ≥ 	�:0-V;:$� + P��:@ − A-:1 − 3-@ ≥ 0 

From the second equation of system of equation (1) O��O@ = P	���:@ − A-:1 − 3-�� − .��:@ − A- − $���:@ − A- 

5?)57 ≥ −:. + $�-��:@ − A-                    (5) 

Integrating both sides we have 

Q 1�� O�� ≥ − Q−:. + $�-:@ − A-O@ 

T��� ≥ −:.:@ − A- + $�:@ − A-@ + U ��:@- = V;:.:@ − A- + $�:@ − A-@ × VX           (6) 

Let VX = D 

When @ = 0, ��:0- ≥ VX ��:@- ≥ ��:0-	V;:.:@ − A- + $�-@ ≥ 0           (7) 

Similarly, it can be shown that the remaining equations of 

the model are positive for all @ > 0,  because Vℵ > 0,  for 

all	ℵ ∈ ℝ. 

Therefore our model has positivity of solutions. 

2.6. Reproduction Number ]^ 

Basic reproduction number is defined as expected number 

of secondary cases produced by a single infection in a 

completely susceptible population i.e. it is a measure of how 

fast a disease spreads through a population	 3". �` Is obtained by taking the largest dominant Eigen value 

of ab;= or spectral radius of ab;= 

Let a = cde?fc>g  and b = che?fc>g  and �` − Disease free 

equilibrium ai − Is the rate of appearance of new infections in 

compartment i bij −is the transfer of individuals into compartment i bi; −is the transfer of individuals out of compartment i ki = li;:3- − lij:3- 

From the system of equation (1) we obtain ai as, 

ai =
mnn
no'()*+:7;<-:=;>-,)01(+*):7;<-:=;>-,+0 pqq

qr
                                (8) 

Taking partial derivatives of sais�� , sais�� , sais�� , sais�� 

To get 

a =
mnn
nno0 0 0 '():=;>-tuvw,)0 0 0 000 1(+:=;>-tuvw,+0 00 00 pqq

qqr            (9) 

Also from system of equation (1) we obtain bi as 

bi = mnn
o :. − $�-��:@ − A-:$� + %�-�� + /:1 − B-��:@ − A- − .��:@ − A-4��:@ − A- + :$� + %� + Y3 + TF-��:$� + %� + Y3 + TF-�� − 4��:@ − A- pqq

r	 (10) 

Taking partial derivatives of sbis�� 	sbis�� 	 sbis�� 	 sbis�� 

b = mnn
no:. − $�-V;x< 0 	0 	0−.V;x< :$�+%�- + /:1 − B-V;x< 0 000 00 4V;x< + :$� + %� + Y3 + TF-−4V;x< 0:$� + %� + Y3 + TF-pqq

qr
      (11) 

Let y = :. − $�-V;x< 
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z 8 �.V;x< { 8 :$�
%�- 
 /:1 − B-V;x< | = 4V;x< + :$� + %� + Y3 + TF- � = −4V;x< a = :$� + %� + Y3 + TF- 

Then, b;= =
mn
nn
no =} 0 0 0;~}� =� 0 0
00 00

=�;?�d
0=dpq
qq
qr
                                                                          (12) 

And so, 

ab;= =
mnn
nno 0 0 − ?'():=;>-tuvw,)�d 	'():=;>-tuvw,)d 	0 0 0 0;~1(+::=;>-tuvw,+}�0

1(+::=;>-tuvw,+�0 00 00 pqq
qqr                            (13) 

Let 

a=− ?'():=;>-tuvw,)�d  

b=
'():=;>-tuvw,)d  

c=
;~1(+::=;>-tuvw,+}�  

d=
1(+::=;>-tuvw,+�  

Then (13) becomes, 

ab;= = �0 0 �	�	0 0 0 0U0 O0 00 00�                        (14) 

then the characteristic equation of (14) is given by, |ab;= − 	��| = 0 

Which implies that, 

�−� 0 � �0 −	� 0 0U0 O0 −�0 0−	�	� = 0                (15) 

Therefore 

−� �−� 0 �0 −� 0U O −�� + �:0- − �:0- = 0      (16) 

��:�� − �U- = 0 

�� = 0	��	�� = �U,⟹ 	� = ±√�U	            (17) 

The dominant Eigen value or reproductive ratio is � = √�U 

Therefore, 

�` = � �tuvw():=;>-tuvw,):��tuvwj:�+j�+j�>j��-�:�+j�+j�>j��-- ×
	� �tuvw1(+::=;>-tuvw,+::�)j�)-j�:=;�-tuvw--	                  (18) 

2.7. Existence of Disease Free Equilibrium 

In the absence of disease in the population we have; :��, = �� =, �� = �� = 0 = ��). 

Here,�� = 0  since there will be no disease to recover 

from, hence from the system of equation	:1-	we have, 

Λ� + 0�� −	$�	� − '()*+:7;<-:=;>-,) = 0         (19) 

− 1*):7;<-(+:=;>-,) + Λ� − :$� + D3 + EF-	� = 0 (20) 

Since �� = 0 in (19) 

We have, 

	� = Λ�$� 

Since �� = 0 in (20) then, 

�+�+j�>j�� = 	�                              (21) 

Similarly, when 	:��, = �� =, �� = �� = 0 = �� ) in the 
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remaining equations becomes 

��̀ 8 0, , ��̀ = 0, , ��̀ = 0, , 	�̀ = �+�+j�>j�� , ��̀ = 0, ��̀ = 0 (22) 

Where E�̀ , -at disease free equilibrium and likewise 	I�̀, , R�̀, , S�̀, E�̀	and, I�̀ respectively 

Therefore disease free equilibrium point of our malaria 

model is given by 

�0 = :	ℎ0, �ℎ0, �ℎ0 , �ℎ0, 	£0 , �£0 , �£0 - = :Λℎ$ℎ , 0,0,0 Λ£$£+Y3+TF, 0, 0) 

This is the state where there is no malaria in the 

population. 

2.8. Stability of Disease Free Equilibrium 

The stability of the disease free equilibrium state can be 

tested using Eigen values of a jacobian matrix obtained at 

DFE, this is where �¤ < 1 . The linearization matrix of 

system of equation (1) at disease free equilibrium is given by 

¥ =

mn
nn
nn
nn
nn
o−$� 0 0	 0 0 0 −P 6):=;>-tuvw,)0 −.V;x< − $�V;x< 0 0 0 0 P 6):=;>-tuvw,)0 .V;x< −:$� + %�- − /:1 − B-V;x< 0 0 0 00 0 /:1 − B-V;x< −$� − 0 0 0 00 0 − 16+:=;>-tuvw:�+j�>j��-,+ 0 −$� − %� − Y3 − TF 0 0

0 0 16+:=;>-tuvw:�+j�>j��-,+ 0 0 −4V;x< − $� − %� − Y3 − TF 00 0 0 0 0 4V;x< −$� − %� − Y3 − TFpq
qq
qq
qq
qq
r

 (23) 

The system of equation  1"	is stable if all the Eigen values 

of linearization matrix are negative. 

In solving the eigen values we let, 

a=−	$�, b=−P 6):=;>-tuvw,) , c=−.V;x< − $�V;x<, 

d=P 6):=;>-tuvw,) , e=.V;x<	
 

f=−:$� + %�- − /:1 − B-V;x<
, g=/:1 − B-V;x<

, h=−$� − 0, 

i=− 16+:=;>-tuvw,+ , j=−$� − %� − Y3 − TF 

k=
16+:=;>-tuvw,+ , l=−4V;x< − $� − %� − Y3 − TF, m=4V;x<, 

n=−$� − %� − Y3 − TF 

Solving the eigen values of the jacobian matrix |J − λI| = 0 

�U + � 0 0 OV ¨ + 	� 0 0U0 Y0 T + �£ 0� + 	�	� = 0           (24) 

We have :U + �-:� + 	�-:¨ + �-:T + 	�- − O£VY = 0      (25) 

To simplify the equation (25) 

Let y= = �, y� = T, y© = ¨, yª = U	��O	« = O£VY 

This implies :� + y=-:	� + y�-:� + y©-:	� + yª- − « = 0      (26) 	�ª + 	�©z=+	��z� + �z© + zª = 0           (27) 

Where, z= = yª+y© + y�+y= 

z� = yª:y© + y�+y=- + y©:y�+y=- + y�y= z© = yªy©y�+yªy©y= + +y©y�y= zª = yªy©y�y= − « 

Therefore �` in equation (18) can be written in terms of yi 
where i=1,2,3,----n 

As 

��̀ = :�tuvw1::=;>-tuvw(+-:�tuvw:=;>-tuvw()-,+,)}¬}­}®­          (28) 

Using the Routh-Hurwitz criteria on equation (27) we can 

show that all roots have negative real parts. 

Routh –Hurwitz criteria 15" gives necessary and sufficient 

conditions for all the roots of characteristic polynomial and 

lies on the left half of the complex plane. 

Theorem 2.8 Routh-Hurwitz criteria. 

Given the polynomial °:�- = �±+�±;=z= + − − +�z±;= + z± 

Where the coefficients zi  are real constants ! = 1, − − −�, 
define the � Hurwitz matrices using the coefficients zi  of the 

characteristic polynomial 

Where ²= = :z=-, ²� = ³z= 1z© z�´ , ²© = µz= 1 0z© z� z=z¶ zª z©· , 

²± =
mnn
nnn
noz= 1 0	 0 0 ′ 0z© z� z= 1 0 	′	 0z¶ zª z© z� z= ′ 0′ ′ ′ ′ ′ ′ 0′ ′ ′ ′ ′ ′ 0′ ′ ′ ′ ′ ′ 00 0 0 0 0 ′ z±pqq

qqq
qr
 

Where z¹ = 0  if º > �,	 all the roots of the polynomial °:�- are negative if and only if the determinants of Hurwitz 

matrices are positive 
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det¼²¹½ � 0, º 8 1,2 � � � � 

For the equation (27), when n=4, the Routh-Hurwitz 

criteria are z= � 0, z� � 0, z©	� 0, z© � 0  and the determinants of 

Hurwitz matrices are: det:²=- 8 z= � 0 

det:²�- 8 ³z= 10 z�´ , z= z� � 0 

det	:²©- 8 µz= 1 0z© z� z=0 0 z©· 8 0, z=z�z© � z©� � 0 

det	:²ª- 8 �z= 1 0 0z© z� z= 100 zª0 z©0 z�zª	�8 0, z=:z�z= �	z©- � zªz=� � 0 

Clearly, from Hurwitz matrices all the determinants are 

positive, which means that all the Eigen values of the 

jacobian matrix have negative real part. Moreover, if �` � 1, 

it follows that from (28) that yi � 0 and therefore disease 

free equilibrium point is stable when �` � 1. 

3. Numerical Simulations and Results 

The simulations were performed using MATLAB’S built 

in dde 23 solver. In the analysis, initial population sizes and 

other parameters were obtained from literature as shown 

from the table below. 

Table 1. Description of variables and parameters of malaria model. 

PARAMETER VALUE REFERENCE Λ� 0.028 per day Chiyaka et al (2008) Λ� 6 Estimated . 1/14 Malaria.com (2011) $� 0.00004 per day Hyun (2001) %� 0.0004per day Prince Harvim (2014) %� 0.01 per day Chiyaka et al (2008) $� 0.04 per day Chiyaka et al (2008) 

Z 0.2 per day Estimated 
K 1/365 Estimated 

L 1/365 Estimated P 0.0025 Estimated 0 0.04 Estimated 4 1/12 Chiyaka etal (2008) ¿ 0.0415 Estimated / 0.005 Estimated � 0.06 Estimated 3 0.5 Estimated F 0.5 Estimated 

The initial conditions used are: 		� 8 300,�� 8 200, �� 8 100, �� 8 50, 	� 8 400, �� 8300, �� 8 200 t=350 days 

Numerical simulation. 

 

Figure 2. Shows human population against time in days. 

From the graph it shows that the number of infective 

humans reduces considerably because of the use of control 

strategies, while the number of humans susceptible also 

increases because the disease is under control. 

 

Figure 3. Shows mosquito population with time. 

From the figure it is evident that the number of infective 

mosquitoes went down significantly with time as a result of a 

combination of control strategies and treatment used, while 

those exposed to disease dropped significantly. 
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Figure 4. Simulation of Long Lasting Insecticides Treated Nets (LLINS). 

From figure 4. above when the contol strategies are not 

used x=y=z=0 the number of infective humans was high, and 

when only LLINS (x) was used the number of infective 

humans and mosquitoes dropped. 

 

 

Figure 5. Simulation of Indoor Residual Spraying (IRS). 

Figure 5 From the above figure it is evident that indoor 

residual spraying reduced the number of mosquitoes, while it 

didn’t have any impact on infected human population 

 

 

Figure 6. Simulation ofTreatment (with drug). 

From figure 6. It shows that with the use of drugs for 

treatment of malaria, it reduced the number of infected 

humans with time. 

4. Conclusion 

From the study, SEIR and SEI model for humans and 

mosquitoes were used to study malaria transmission 

dynamics. The model is achieved with control strategies such 

as; use of long lasting treated bed nets (LLINS), indoor 

residual spraying, intermittent preventive treatment for 

infants and pregnant mothers. 

The model equations generated were used to calculate 

reproduction number using the next generation matrix. From 

the results it was found out that when �` � 1 the model was 

locally stable and the disease was controlled and when �` � 1, the disease persists because number of infective 

humans increased. 

Therefore with the combination of control strategies and 

treatment, the malaria spread is put on control. 
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5. Future Research and Suggestions 

The model in our research has not exhausted all the 

strategies, like developing a malaria vaccine to check on 

malaria spread. Future model should be developed to include 

the effects of environment on the number of infective 

mosquitoes. 
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