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Abstract: In this paper, the problem of ill-posedness of solution in identifying multiple groundwater flow parameters from 

hydraulic head data and other ancillary data was assessed. The solution approach to the parameter identification problem is 

sought by applying the Least Squares, the Adjoint, the Conjugate Gradient Method and a proposed Parameter Transformation 

Method. Numerical test for a 1D and 2D flow models governed by PDEs were used to assess the accuracy and stability of the 

proposed method. The proposed method gave an appreciable solution estimates with minimal error-norm compared with the o 

ptimisation techniques explored in the study as a measure to the PTM The results revealed that when the adapted methods 

and the PTM were simulated numerically on a 1D and 2D test problems, the PTM gave a more stable solution estimates 

with a residual norm-error value of 2.23500 for the 1D test problem compared with that of the Adjoint method which prove 

to be the comparing solution with a norm-error value of 2.66500. For the 2D test case, the results also revealed that the 

PTM was stable with a residual norm-error value of 10.98310 compared with that of the Conjugate Gradient method with 

value of 86.562. Thus in conclusion, the study revealed that the PTM is capable of yielding realistic solution estimates 

compared with the studied optimisation methods. 

Keywords: Ill-Posed Problem, Parameter Transformation Method, Optimisation Techniques 

 

1. Introduction 

Parameter Identification refers to the estimation of 

unknown coefficients in a differential equation describing a 

phenomenon from observations of the solution to its state 

variable. The process of assigning appropriate values to 

model parameters in a given differential equation by 

comparing model outputs to field measurements is termed as 

inverse modelling [21]. In groundwater flow, model output 

refers to hydraulic head, whilst model inputs correspond to 

drawdown, hydraulic conductivity or transmissivity, 

recharge, storativity, boundary conditions setting, etc. Most 

of these output and inputs parameters are determined either 

by conducting pumping tests or using studied optimisation 

algorithm to estimate the parameters of interest. 

The difficulties associated with the estimation of these flow 

parameters out of partial differential equations governing a 

flow model in a bounded region can be attributed to the sparse 

distribution of hydraulic head data at well sites, as well as 

inherent measurement errors. Most of the parameters are also 

very difficult to measure since the bounded regions are 

inaccessible, resulting in data perturbation. The problem of 

estimating these parameters are characterised by non-

uniqueness of solution due to data insufficiency [1, 6, 27]. A 

range of algorithms (e.g. PEST, GLUE, DREAM) have been 

developed to explore the non-uniqueness of model solutions 

[27]. Alternatively, adjoint state solutions and other gradient 

search algorithms have also been used. 

Though many inverse solution methods for addressing the 

problem have been proposed, no published works claim to 

handle fully inverse parameter estimation problem or 

simultaneous recovery of multiple groundwater flow 

parameters [9, 14, 23]. Other related studies also bring to 
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bear the fact that multiple parameter estimation is possible 

but, the ill-posedness in the solution turns to increase as the 

number of parameters to be estimated increases [1]. 

This paper seeks to develop a novel and efficient method 

for estimating multiple flow parameters for an inverse 

groundwater flow model from hydraulic head data. 

Furthermore, the work would seek to assess the problem of 

non-uniqueness of solution. 

2. The Inverse Problem Formulation 

The section focuses on the inverse problem formulation for 

a flow model problem. The exact approach applied to the 

inverse methodology and the ill-posedness of the inverse 

problem are discussed under this section. 

2.1. The Model Problem 

Consider the nonlinear partial differential equation for 

three-dimensional confined groundwater flow model 

( , , ) ( , , )

( , , ) ( , , )

h h
T x y z T x y z

x x y y

h h
T x y z S x y z Q

z z t

 ∂ ∂ ∂ ∂  +   ∂ ∂ ∂ ∂   

∂ ∂ ∂ + = + ∂ ∂ ∂ 

           (1) 

Subject to the initial and boundary conditions: 

( )00
( , , , ) ( , , ), ,

t
h x y z t h x y z x y= = ∈Ω             (2) 

1
1( , , , ) ( , , , ),h x y z t h x y z tΓ =                    (3) 

2
2( , , , ) ( , , , ),T h x y z t h x y z tΓ∇ =                  (4) 

where ℎ=Hydraulic head (LT-1), � = transmissivity (LT-1), 

� =Storage coefficient (unitless), � =source/sink term (LT-

1), and � =time component. In this problem, T and S are the 

parameters of interest, and ℎ is the state response variable. 

1Γ  is the boundary of the aquifer subject to a Dirichlet type 

boundary conditions and 2Γ  the boundary of the aquifer 

subject to a Neuman type boundary conditions with flow 

region Ω. The functions	ℎ�, 	ℎ	 and 	ℎ
 are known functions 

at the boundaries 1Γ  and 2Γ  of the aquifer. 

Given the initial and final boundary conditions together 

with the parameters T and S Equations (1) to (4) can be 

solved numerically to determine the hydraulic 

head 	ℎ(�, �, �, �)  uniquely. This constitutes the forward 

problem, but often, the parameters of interest are not known. 

The inverse problem arises when ℎ(�, �, �, �) is observed at 

some selected discrete points ( , , )i i ix y z ∈Ω  and one is 

required to solve Equations (1) to (4), to determine one or 

more of the unknown parameters T and S. The objective of 

the inverse problem is to find the parameter	�	and	�, so that 

the head	ℎ, predicted by the model solution are very close to 

the observed heads	ℎ� , measured by fieldwork. This can be 

written as an optimisation problem, where the objective is to 

minimise the squares of the difference between estimated and 

measured heads as in Equation (5) 

2

2
h hφ = −ɶ .                                    (5) 

To estimate the coefficients parameters T and S, hydraulic 

heads are measured at discrete points for the parameters (T, 

S), which is usually not known but determined by conducting 

pumping tests. The selection criterion is usually based on the 

minimisation of some function of	(� − ��)	and	(� − �̅) using 

least squares criteria as in Equation (6) over a bounded 

region � ⊂ ℝ�	(� ≥ 2), with smooth boundary	�� 

ɶ
2

( , ) ( , ) ( , )T S h T S h T Sφ  = −  ,                   (6) 

where ℎ(��, �̅)  and ℎ�(�, �)  are the calculated and the 

observed heads respectively. For an aquifer area Ω and at 

time interval	�, Equation (6) can be expressed mathematically 

as an integral function as shown by Equation (7) 

ɶ
2

( , ) ( , ) ( , )

t

T S h T S h T S d dtφ
Ω

 = − Ω ∫∫           (7) 

However, since the hydraulic head are measured at discrete 

points for N number of observations over a total time period 

Tf, the Equation (7) then becomes Equation (8). 

ɶ
2

, ,

1 1

( , ) ( , ) ( , )

fT N

t n t n

i n

T S h T S h T Sφ
= =

 = − ∑∑           (8) 

The discretisation method leading to Equation (8) almost 

invariably makes the problem ill-posed. That is, a small 

perturbation within the data can lead to a large difference in 

the solution estimates 

2.2. Ill-Posedness of the Inverse Problem 

The associated Inverse Problem stated in Section 2 above 

is to find ( ),T x y when ( ),h x y  is known or observed from 

field measurement. To determine analytically the solution to 

the problem, Equation (1) can be written in linear differential 

form as stated in Equation (9) 

0
T T

a b cT Q
x y

∂ ∂+ + − =
∂ ∂

,                          (9) 

where 

2 2

2 2
, ,

h h h h
a b and c

x y x y

∂ ∂ ∂ ∂= = = +
∂ ∂ ∂ ∂

. The variables 

 , !, "  and ( ),h x y are known functions. Equation (9) is a 

first order PDE with respect to Transmissivity ( ),T x y . The 

general solution of Equation (9) involve arbitrary functions 

of T and has the characteristic equation given by Equation 

(10) 
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( )
dx dy dT

a b Q cT
= =

−
                        (10) 

Equation (10) has at least two or more solutions. If ( )1 ,T x y  

and ( )2 ,T x y  are solutions generated out of Equation (10), 

then 1 2T T+  is also a solution of the Equation (10). Therefore, 

the solution of the inverse problem in Equation (1) is not 

unique. To assess the stability of the problem, the flow 

Equation in (1) and its boundary conditions can be subjected to 

the Cauchy data in Equation (11) 

1 2, and ; 0
x y

h h
T q T q q

x y

∂ ∂= − = − >
∂ ∂

    (11) 

From Equation (1), the forward problem of finding 

( ),h x y  given ( ),T x y  can be determined by Direct 

Integration of Equation (1) using the Cauchy data in 

Equation (11). Assuming that ( ) ( ) ( ), , ,T x y T x y x yε∗ = + , 

where ( ),x yε  is an error term in the known value of �, then 

from Equation (1), one obtains Equations (12) and (13) 

( )
( ) ( ) ( )

1

1

,

, , ,

x

x x

x

x y dx
h h q

T x y T x y x y

ε
ε

∗− =
 + 

∫        (12) 

( )
( ) ( ) ( )

1

2

,

, , ,

y

y y

y

x y dy
h h q

T x y T x y x y

ε
ε

∗− =
 + 

∫            (13) 

Combining Equations (12) and (13), gives Equation (14) 

( ) ( ) ( ) ( ), , , ,h x y h x y M x y N x yε ε∗− = +          (14) 

where M and N are arbitrary constants and defined 

respectively as 

( ) ( ) ( )
1

1

1
( , )

, , ,

x

x

M x y q dx
T x y T x y x yε

=
 + 

∫  

and 

( ) ( ) ( )
1

2

1
( , ) .

, , ,

y

y

N x y q dy
T x y T x y x yε

=
 + 

∫  

Thus, substituting the arbitrary constants M and N into 

Equation (14) yields: 

( ) ( ) ( ) ( ), , , ,h x y h x y K x y x yε∗− ≤         (15) 

where ( ), ( , ) ( , )K x y M x y N x y= + . The Equation (15) 

signifies that the forward problem is very stable. But in this 

identification problem, one’s intent is to solve the inverse 

problem for ( ),T x y  given ( ),h x y . Because the Cauchy 

data is already given by the boundary conditions, the inverse 

problem has unique solution given as in Equation (16) 

( )

( )

1

2

,

,

x

y

q
T x y

h x

q
T x y

h y

= − ∂ ∂ 

= −
∂ ∂ 

                         (16) 

The true distribution of ( ),h x y  (or the exact value of the 

head distributions) can never be known. Thus, one can only 

have noisy head observations: ( ) ( ) ( ), , ,h x y h x y x yη∗ = + , 

where ( ),x yη  is the error term in the head data. The 

corresponding inverse solution from Equation (16) now 

becomes Equation (17) 

( )

( )

1

2

,

,

x

y

h
T x y q

x x

h
T x y q

y y

η

η

∗

∗

∂ ∂ = − +  ∂ ∂  


 ∂ ∂ = − + ∂ ∂ 

                   (17) 

Subtracting Equations (17) from (16), by taking absolute 

of both sides, gives Equation (18) 

( ) ( ) ( )

( )

1

2

, ,
q x

T x y T x y
h x h x x

q y

h y h y y

η
η

η
η

∗ ∂ ∂
− =

∂ ∂ ∂ ∂ + ∂ ∂

∂ ∂
+

∂ ∂ ∂ ∂ + ∂ ∂

      (18) 

From Equation (18), it can be inferred that although 

( ),x yη  is very small, xη∂ ∂  and yη∂ ∂  are very large. 

Thus, from Equation (18), the solutions to Equation (1) is 

generally not unique and unstable to the observation error. To 

conclude, the non-steady state 2-D groundwater flow 

equation is ill-posed in nature. 

3. The Solution Methods 

The solution methods considered for this study are: The 

Least Squares Method [16], the Adjoint Method [25, 26], and 

the proposed Parameter Transformation Method (PTM). A 

Finite Difference Scheme by [11] was used to discretise the 

flow equation in Equation (1) to obtain the parameter 

dependent system in Equation (19). 

( ) ; with [ , ]A q h F q S T= =                    (19) 

where #($) is an operator matrix that depends on the vector 

of unknown $, h is observed hydraulic head data, and F is a 

vector of functions that are not hydraulic head dependent and 

encompass also the boundary conditions. A detailed approach 

of how the parameter dependent system in Equation (19) was 

obtain is demonstrated in the text by two numerical 

examples. The matrix #($)	is a symmetric positive definite 

and a block tridiagonal matrix. 
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The inverse problem of interest is to estimate $	 in 

Equation (19) given the observed data ℎ  from field 

measurements. For this study, the following solution methods 

were considered to estimate the parameter of interest. 

3.1. Solution by Least Squares Method 

The main idea here is to minimise the error function E as a 

function of the parameter $	 such that a measure of the 

difference between the estimated (ℎ%)  and observed data 

(ℎ&'()  is a minimum [16]. A necessary condition for the 

minimum value of )($)  is that the derivative of E with 

respect to $ becomes zero. 

2 ( , , t) ( , , ) 0q obs

h
h x y h x y t

q q

φ∂ ∂
 = − = ∂ ∂∑      (20) 

The computational procedures for recovering the 

parameter is by “try and error” method. First, an initial guess 

of $*  is chosen based on the stability criteria of the finite 

difference scheme. An error term iφ  expressed as in Equation 

(21). 

( , , ) (x, y, t),i q obsh x y t hφ = − 1,2,3,...,i n∀ =       (21) 

is determined such that the difference between the 

observed and the estimated minimises the function as shown 

in Equation (22) 

2
1 2 3

1

( , , ,..., ) ( )

n

n j

j

q q q qφ φ
=

=∑                  (22) 

To modify 	$*  to increase its convergence, a new value 
*
( , , )qh x y t  is sought based on the initial observed value	ℎ%	 . 

The new value is obtained by approximating the function + 

with the derivative function which determines an increase or 

decrease as indicated in Equation (23) 

*

*
0

n
q

q q i

ii

h
h h u

q=

 ∂
= + ⋅  ∂ 

∑                              (23) 

where +*  represent the change between successive intervals 

for the value of	$*. Then the error 
*
jφ  in the new estimated 

value 
*
qh  can also be expressed as: 

* *
j q obsh hφ = −  1, 2,3,...,j n∀ =                     (24) 

The derivative function in Equation (23) can be obtained 

by difference approximation ( δ ). given by Equation (25). 

*
1 1 2 2 1 2( , ,...., ) ( , ,..., )

  
q q n n q ni

j
ii

h h q u q u q u h q q q

uq
δ

∂ + + + −
= =

∂
 (25) 

Substituting Equation (25) into Equation (23) yields 

Equation (26). 

( )*

0

n
i

q q j i

i

h h uδ
=

= + ⋅∑                         (26) 

From Equations (21), (24) and (26), one obtains Equation 

(27). 

( )*

0

n
i

j j j i

i

uφ φ δ
=

= + ⋅∑                              (27) 

But from Equation (27), the error in the new estimate can 

also be optimised as in Equation (28). 

( )
2

* 2
1 2

1 0

*( , ,..., ) ( )

n n n
i

n j j j i

j j i i

q q q uφ φ φ δ
= = =

 
= = + ⋅ 

  
∑ ∑ ∑  (28) 

To minimise the value of *φ  with respect to $* to recover the 

exact value of $, the expected value *φ  is differentiated with 

respect to the small change	+*. The derivative function becomes  

( ) ( )
0 0

*
2 0

n n n
i q

j j i j
i j i i i

u
u

δφ φ δ δ
δ = = =

 
= + ⋅ ⋅ = 

  
∑ ∑ ∑        (29) 

The derived model corresponding to the value of 	$*  is also 

given by Equation (30). 

( ) ( )
0 0

, 0,1, 2,..., .

n n n
q i q
j j i j j

j i i i

u i nδ δ φ δ
= = =

 
⇒ ⋅ ⋅ = − ∀ = 

  
∑ ∑ ∑  (30) 

The Equation (30) signifies that parameter
q
jδ within the 

model equation (Equation (30)) minimises the error factor to 

produce an approximate solution for	$. Usually, computing 

the gradient of the least squares cost function is extremely 

difficult. This is because the matrix in question is not a 

constant matrix. A way out is the Adjoint or Costate Method 

proposed by [3]. 

3.2. Solution by Adjoint Method 

The method was originally formalised by [3] following 

previous applications in reservoir characterisation [4, 5, 8]; 

and nuclear engineering [15]. The method was introduced to 

the groundwater modelling literature by [20], following 

earlier implementations by [12, 13, 24]. Subsequent 

publications included [18, 22, 27]. In summary, since the 

publication of [20], over 40 applications of adjoint methods 

to confined groundwater flow problems have been published. 

Formulating the minimisation problem in Equation (1) using 

adjoint methods requires the computations of the gradient of 

the least squares function defined in Equation (21). 

2 2

2 2
( ) ( ) ( )ls obs obsq h q h F q hφ = − = −         (31) 

where ℎ&'( ≝ -ℎ + / = 0,  /	 is noise, 
1( ) ( ) ( ) ,h q F q CA q f−= =  - is the state to observation map 
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and 1($) = 2($) − 0; the residual. The objective is to solve 

numerically for an optimal parameter using the gradient 

algorithm 

1 ( )k k k ls kq q qα φ+ = + ∇                      (32) 

The component of the gradient  of the least 

squares function ( )ls qφ  be expressed as shown in Equation 

(33). 

1 1( ( )) ( ) , ( ) ( )T T
ls i i

dA
q e A q f A q C r q

dq
φ − − 

∇ = ⋅ 
 

 (33) 

If the solution to the state Equation (19) is + and that of 

the Costate or Adjoint Equation: ( ) z ( )T TA q C r q= −  is 	� , 

then Equation (34) becomes  

1( ( )) ( ) ( ) ( )

T

ls q i

dA
q CA q e h q r q

dq
φ −  

∇ = − ⋅ ⋅   
  

    (34) 

The matrix operator ( )A q , has a diagonalisation of the 

form: ( ) ( )div gradA q B D q B= , where 45*6 = 47895
:  is the 

block upper diagonal, and ;($) is the diagonal entries of q. 

Substituting the derivative of A with respect to $*  into 

Equation (34) and simplifying gives Equation (35). 

1
( ( )) ,T

ls i i
i

dD
q e B h Bz

u dq
φ

 
∇ =  

 
              (35) 

The vectors ℎ and � in Equation (36) are the solutions to 

the discrete state and Costate equations #($)ℎ = 2  and 

( ) z ( )T TA q C r q= −  respectively. 

3.3. Solution by the Proposed Parameter Transformation 

Method 

The solution methods for the parameter distributed system 

discussed in Sections 4 and 5 can sometimes be very 

intractable and unwieldy. As an alternative, the Parameter 

Transformation Method (PTM) is proposed. Consider the 

parameter-dependent linear system problem given in 

Equation (19). 

Given the entries <$*=>; 	1 < A < B; 
1 < C < �  of A, and the right-hand vector

1 2 3[ ]T
mF f f f f= … , then determining

1 2 3 4[ ]T
nh h h h h h= … , so that Equation (19) is satisfied, 

is a forward problem. Suppose the problem posed in 

Equation (19) is to determine the entries <$*=> of the matrix 

operator ( )A q ; given the hydraulic head ℎ and the right-hand 

vector 2; then this constitute an inverse problem. 

Our approach to solving this inverse problem is based on 

the Proposition stated below. The proposition transforms 

Equation (19) into an equivalent linear system, whose 

solution gives the unknown entries of the matrix A as a 

vector. The unknown vector can then be solved by standard 

numerical algorithms. 

Proposition: The linear system problem in Equation (19) is 

equivalent to the linear system in Equation (37). 

( ) ,B h q F=                             (36) 

where $ is an B� × 1	vector and B an m mn×  matrix given 

by 

1

2

0 0

0 0 0

, and 0

0

0 0

T T T

n
T T

n

T T

T

T Tmn

hq

hq

q B h

q
h

 
   
   
   
 = =  
   
   
    

 

⋯ ⋯

⋯

⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱

⋯ ⋯

. 

The parameters $, +	and	0	are defined respectively as: 

1 2 3 1 2 3[ , , , , ], [ , , , , ]T T
in i i i in nq q q q q h h h h h= =… ⋯

and 0 [0 0 0 0] 1, 2, ,T i m= ∀ =⋯ …  

Proof 

It can be verified from the Proposition that 

( ) ( )A q h B h q F= =                           (37) 

Discretising Equation (1) by Cell Centered Finite 

Difference (CCFD) scheme gives 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

1, , 1, . 1, , 1, ,

, 1 , , 1 , , 1 , , 1 ,

1
, ,

. .

1 1

2 2

1 1

2 2

k k k k
i j i j i j i j i j i j i j i j

k k k k
i j i j i j i j i j i j i j i j

k k
i j i j

i j i j

T T h h T T h h

T T h h T T h h

h h
S x y Q x y

t

− − + +

− − + +

−

+ − + + −

+ + − + + −

 −
 = ∆ ∆ + ∆ ∆
 ∆
 

 (38) 

Expressing Equation (38) as a parameter dependent linear 

system yields 

1 1

[ , ]

n m

ij j

i j

L S T h F

= =

=∑∑  

1 1

[ ]

n m

ij j

i j

L q h F

= =

=∑∑                            (39) 

where $ = (�, �), and 2 is a function of a space state η . In 

compact form Equation (39) becomes: 

( )A q h F=                                  (40) 

The derivative operator F*=[$] with basis functions I* , I= 
can be defined as 

( )ls qφ∇
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L [ ]

[ ( ) ]

def

ij j i

j i ij

q q w w d

q meas w w q L

Ω Ω
Ω Ω

Ω Ω

= ∇ ∇ Ω

= Ω ∇ ∇ =

∑ ∫

∑ ∑

i

i

     (41) 

The Equation (41) is a measure of the parameter unto the 

domain of the function. The inverse problem of identifying 

the parameter $	can be reconstructed from Equation (42) as 

[ ]
1

; 1ij j

j m

M h q F i n

≤ ≤

= ≤ ≤∑             (42) 

( )( )[ ]
def

ij j iwhere M h h w h w d

Ω Ω

= ∇ ⋅∇ ∇ ⋅∇ Ω∑∫  

The transformed matrix J*=  can be recast from F*=  using 

Equation (41) as 

1

1 1

[ ] ( ) [ ]ij k ki l lj

k n l n

M h h L h L q B hΩ Ω Ω −

Ω ≤ ≤ ≤ ≤

  
= =  

  
  

∑ ∑ ∑  

The equivalent transformation of Equation (40) then 

becomes ( )B h q F= . 

Suppose we consider the parameter-dependent linear 

system #($)ℎ = K	 for the special case with dimensions 

B = 5 and � = 3, then to transform 

Equation (1) into ( )B h q F= , the parameters in the system 

can be defined as follows: 

1 2 3

13 23 33 43 53

3 1 2 3

[ , , ],
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The equivalent transformation ( )B h q F= is given by 

Equation (43). 
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      (43) 

Equation (43) can further be expanded as 
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                        (44) 

The linear system problem in Equation (44) is under-

determined since the number of equations B is less than the 

number of unknowns B� . However, in most parameter 

estimation problems the matrix B(h) is sparse, and as such 

the number of parameters ;ijq  to be estimated is much less 

than B�. In fact, very often, the number of non-zero entries 

of B(h) is less than B; resulting in an over-determined linear 

system, which can be solved by the least-squares method. 

The Proposition 1 can be used to determine both isotropic 

and anisotropic conditions 

4. Numerical Test 1 

Consider the problem of identifying the diffusitivity $(�) 
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of sediments from measurements of a piezometric head ℎ in a 

one-dimensional steady-state diffusion equation given by 

Equation (45). Although, the Numerical Test 1 considered is 

a well-posed problem, random noise (/) was added to ℎ to 

make the problem an ill-posed one. 

( ) ( )
h

q x f x
x x

∂ ∂ − = ∂ ∂ 
, (0,1)x ∈             (45) 

The essence of the numerical example is to ascertain the 

efficiency of the proposed PTM method. The interval chosen 

for the model example is [0, 1], with homogeneous Dirichlet 

boundary conditions as stated in Equation (46). 

ℎ(0) = 0, and	ℎ(1) = 1,                      (46) 

The source terms K for the model problem were taken as 

Dirac delta	(N) functions defined as in Equation (47). 

1

2

3

( ) ( 1 4) ,

( ) ( 1 2),

( ) ( 3 4)

f x x

f x x

f x x

δ
δ
δ

= − 
= − 
= − 

                          (47) 

The inverse problem of interest is to determine the 

unknown diffusion coefficient q(x), given a measurement of 

the solution h(x), called the observed data	(ℎ&'(), and the 

source or sink term	K. The solution approach is to apply the 

proposed PTM coupled with least squares, and the Adjoint 

Method. The Adjoint Method was used as a measure to the 

proposed Parameter Transformation Method (PTM). 

Applying standard piecewise linear Finite Difference 

Discretisation Scheme with nodes 

( ), 1 1 , 50,ix i x x n n= ∆ ∆ = + =  to discretise Equation (45), one 

obtains Equation (48) 

( ) 2
1 1 1 1 ( ) , 1i i i i i i i iq h q q h q h x f i n+ + + −− + + − = ∆ ∀ ≤ ≤  (48) 

In compact form Equation (48) simplifies to Equation (19). 

The operator 	#($)  generated out of Equation (42) is a 

diagonalisation of the form 

#($) = 	

(∆P)Q
4:;($)4 , with B being an upper block 

bidiagonal system and ;($)  the diagonal system with 

diagonal entries consisting of $* . The parameter dependent 

operator system	#($) in matrix form is given by Equation 

(49). Transforming the parameter dependent operator in 

Equation (19) to a vector dependent operator using the PTM 

yields Equation (37). The vector dependent operator 4(ℎ) in 

Equation (37) can be formulated out of Equation (45) as 

shown in Equation (50) 
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                      (50) 

Given the observed data, ℎ&'( from field measurement, the 

parameter $  can be determined form Equation (37) by 

making use of Equation (45). Usually, the observed data ℎ&'( 
taken from field measurements are contaminated with noise 

or are inexact. Suppose an observed data ℎ&'( to the system 

problem is sought from knowledge of ℎ , then the exact 

parameter value (s) must be defined to enable one estimate ℎ. 

If the parameter value is defined as a function of the source 

term deviation at different point sources, then the parameter 

values can be formulated as stated in Equation (51) 

( )( )
( )( )
( )( )

2

1_ 1

2

2 _ 2

2

3_ 3

1 exp 0.25 0.01

1 exp 0.5 0.01

1 exp 0.75 0.01

true

true

true

q x

q x

q x

= + − −

= + − − 

= + − −


            (51) 

To generate the head data	(	ℎ	), the forward problem in 

Equation (19) is solved numerically for the solution	ℎ using 

the parameter values defined in Equation (51). An observed 
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data obsh  to the system is sought by adding random noise (/) 

to the head data	ℎ, as indicated in Equation (52). 

obsh h η= +                                (52) 

The motive here is to simulate the Modelled parameters 

given the observed head data (	ℎ&'(). Approximate solution 

depends on minimum norm solution by the method of least 

squares. The least squares minimisation function for the 

model equation is given by Equation (5). The observed head 

data 	(ℎ&'()  and the true head data (ℎ	) , at discrete and 

different point sources for the one-dimensional steady-state 

problem are shown in Figure 1. From Figure 1, the left, the 

middle and the right curves represent the solution 

corresponding to the point sources	�	 =
	

R
, �
 =




R
	and	�S =

S

R
 respectively. The true solution for each point source are 

represented by a dashed line, whilst the observed is by a 

circle. The observed and the true data modelled do not gives 

a perfect curve fit. Using the generated observed data and the 

forcing functions given in Equation (51), at a point source of 

�
 = 1 2⁄ , the unknown parameter $ for the 1D steady-state 

diffusion equation can be determined by both methods; either 

PTM or and the Costate Method. For the PTM, the 

transformed equation in Equation (37) was used to simulate 

for the unknown parameter of interest. The Adjoint method 

was also used as a measure to the check the proposed 

method. The Adjoint method, on the other hand, makes use 

of the gradient function in Equation (30) to update initial 

guess value of the parameter $	until convergence is reached. 

Convergence in both cases depends on the minimum norm 

solution by the method of least squares. A graph showing the 

Modelled and the observed parameter values at a specific 

point source, �
 =
	



 for both the Adjoint method and the 

PTM are shown in Figures 2 and 3 respectively. Although, 

there are disparities in the solution between the modelled 

parameter values and their corresponding observed 

parameters, the modelled parameter values simulated using 

the observed data are not far from the true parameter values. 

From Figure 3, it can be observed from the solution curves 

that the results obtained using the PTM is better skewed 

compared to that obtained using the Adjoint method. 

The residual norm-error for the two solutions shows that 

the PTM is more stable with a minimal norm-error value of 

2.2350, compared with that of the Adjoint with a norm-error 

value of 2.6650. The observed and the modelled parameter 

values using the PTM is shown in Table 1. From Table 1, the 

variations in the solution of the parameter values are clearly 

shown. Though, some parameter values approximate to the 

observed values, other values do not approximate in any way. 

The difference in the solution estimates between the observed 

and the modelled parameters for the PTM can be rectified by 

incorporating some form of regularisation in the solution 

estimate to stabilise the computations of the solution, and to 

reduce the error within the solution to the barest minimum. 

The mesh flow direction for the PTM is also shown in 

Figure 4. The essence of the mesh flow direction is to help 

assess if there are distortions or spikes in the mesh flow plot. 

The simulated mesh plot for the PTM shows a smooth flow 

direction without any spikes or distortions, an indication that 

the solution can be accepted without any doubt. The colours 

in the mesh flow plot represent different flow levels at 

different height. The absolute percentage errors between the 

observed and the modelled at each parameter point were also 

determined to ascertain the deviation between the observed 

and the modeled. 

 

Figure 1. Modelled True and Observed Data. 

 

Figure 2. Model Fitness Plots for the Observed and Modelled Parameters 

Using the Adjoint. 

 

Figure 3. Model Fitness Plots for the Observed and Modelled Parameters 

Using PTM. 
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Table 1. True and Estimated Parameter Values for PTM. 

Iteration 

number 

Observed 

Parameters (qobs) 

Modelled 

Parameters (qm) 
Errors (%) 

Iteration 

number 

Observed 

Parameters (qobs) 

Modelled 

Parameters (qm) 
Errors (%) 

1 1.0000 0.9943 0.57 11 1.7788 1.8290 5.02 

2 1.0000 0.9973 0.27 12 1.3679 1.4046 3.67 

3 1.0000 1.0001 0.01 13 1.1054 1.1289 2.35 

4 1.0001 0.9985 0.16 14 1.0183 1.0245 0.62 

5 1.0019 1.0027 0.08 15 1.0019 1.0103 0.84 

6 1.0183 1.0153 0.30 16 1.0001 0.9949 0.91 

7 1.1054 1.1331 2.77 17 1.0000 0.9910 0.90 

8 1.3679 1.4130 4.50 18 1.0000 1.0017 0.17 

9 1.7788 1.8304 5.16 19 1.0000 1.0022 0.22 

10 2.0000 2.0688 6.88 20 1.0000 1.0032 0.32 

 

 

Figure 4. Mesh Flow Directions for PTM. 

5. Numerical Test 2 

Consider a horizontal two-dimensional confined aquifer 

ABCD, with boundaries AB, BC, CD, and AD. If AD has a 

constant head boundary (ℎU = 100	m.), and the other heads 

are impervious, with the length of #4����  being 6500 m, 4-���� , 

4500 m, and the aquifer being heterogeneous. Suppose also 

that the aquifer is divided into three zones (AEGD, EFHG, 

FBCH) with transmissivities	�	, �
, �S, respectively but their 

storage coefficients are the same, S. Assume also that there is 

a pumping well located at the third zone with constant 

pumping rate 2000	mS/day , and at the beginning of the 

pumping, the head is constant everywhere in the aquifer with 

initial head data value �& � 100	m. 

The Numerical Test 2 enumerated above is governed by a 

non-steady state two-dimensional groundwater flow Equation 

in Equation (1). The example was adapted from [16], who 

used the conjugate gradient method to estimate the required 

parameters. Our aim is to use the proposed PTM coupled 

with least-squares to recover the same parameters	�	, �
, �S 

and S, and compare the results with the conjugate gradient 

method values obtained by [16]. In solving the problem, two 

scenarios were considered: 

Scenario 1: Let us assume that the transmissivities and the 

storativity of the problem are �	 � 500	m
/day , �
 �

1000	m
/day, and �S � 2000	m
/day and S=0.0001, then 

the head distribution for the forward problem in Equation (1) 

can be estimated at specified time steps ( �	 � 0.5, �
 �

1.0, 	and	�S � 1.5	0 �Z). 

Scenario 2: Using the estimated head data as an observed 

data, the inverse problem to the forward problem in Scenario 

1 is solved to recover the parameters	�	, �
, �S and S. 

In setting up the grid structure for the problem, the 

dimensions given are followed. Figure 5 shows the grid 

structure, the indicated nodal points, as well as the grid size. 

Each nodal point on the grid corresponds to a flowing well. 

Generating equations for each zone using the Cell Centred 

Finite Difference Scheme on the grid structure results in a set 

of systems of equations. The system of equations generated 

for the zones AEGD, EFHG, FBCH using Figure 5 are given 

by the Equations (53), (54) and (55) respectively. The nodal 

point +	
  is not considered, since it is assumed to be a 

pumping well. 

 

Figure 5. Grid Distributions for Model Problem. 

The system of equations in Equations (53)-(55) can be 

expressed in an algebraic form as depicted by Equation (51). 

The distributed parameter system in Equation (46) has the 

coefficient vector � as the head distribution, the parameter $ 

as the unknown parameter of interest with entries 

1 2 3, , , ,T T T S    and the function 	K	as a combination of the 

source term, the pumping rate and the boundary conditions. 

Given the assumed Transmissivities and the Storage 

coefficient, the forward problem in Equation (46) can be 

solved for the head distribution	�, as shown in Table 2. 
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                        (55) 

Table 2. Head Distribution for Forward Problem. 

Node No. Head (h) at 0.5 (day) Node No. Head (h) at 0.5 (day) 

1 98.7758453478351 10 78.0454448836613 

2 96.6044575770095 11 57.1107486346670 

3 93.3890144830225 12 - 

4 86.2008016999414 13 99.3591675318876 

5 77.6460997420352 14 98.9377463132195 

6 69.4115247730088 15 94.2775698834049 

7 98.4989259543307 16 87.7829178992181 

8 95.8606930776003 17 77.9851246418802 

9 91.5546607586357 18 69.4962809979700 

 
Using the estimated head distribution �  in Table 2, the 

unknown parameter 1 2 3, , ,q T T T S=     was recovered by 

solving the transformed equation in Equation (37) to obtain 

Equation (56). The generated system obtained in Equation 

(56), is an over-determined system with a cluster of small 

singular values within the coefficient matrix. The solution to 

the over-determined system in Equation (56), sought for 

either by exact inverse or matrix inversion was found not to 

be unique. Minimising the over-determined system generated 

by the PTM results in a unique solution estimate indicated in 

Table 3. Table 3 gives the results of the identified parameters 

using the PTM, the Conjugate Gradient method used by [16], 
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as well as the observed parameter values. 

                                       (56) 

Table 3. Observed and Identified Parameters. 

Parameters 
Observed 

Values 
PTM 

Conjugate Gradient 

Method (CG) 

�	  500 503.891 525 

�
  1000 1007.783 972 

�S  2000 2011.567 2078 

S 1× 10[R 9.925× 10[\ 1.006× 10[R 

Although, none of the estimated solutions approximate the 

observed parameter values, the values obtained by the PTM 

is more stable with a relative norm-error value of 

14.47566340, compared with that of the Conjugate Gradient 

method with a relative norm-error value of 86.56211640. 

When the time step is increased from t = 0.5	 days to 

� = 1.0	and	1.5  days respectively and solved using the 

generated system of Equations (53)-(55), the head data at 

these time steps are obtained. Using the head data at these 

time steps, Equation (56) is solved again by going through 

same procedure for the parameter $. The results obtained are 

indicated in Table 4. The result shows much consistency in 

values after a time step of � = 1.0 day. 

Table 4. True and Identified Parameters at Different Time Steps. 

Parameters Observed Values PTM at t=0.5 PTM at t=1.0 PTM at t=1.5 Costate Method Conjugate Gradient Method (CG) 

�	  500 503.944 497.603 497.603 507.663 525 

�
  1000 1007.589 995.207 995.207 1011.253 972 

�S  2000 2011.777 1990.413 1990.413 2020.111 2078 

S 1 x 10-4 9.925 x 10-4 1.935 x 10-4 2.902 x 10-5 1.9 x 10-4 10-5 

 

6. Discussions  

The proposed PTM for recovering inverse flow parameters 

has been presented. The Partial Differential Equation (PDE) 

describing the inverse flow model of interest was first 

discretised by either the Finite Difference Method (FDM) 

and the Cell Centred Finite Difference (CCFD) method. The 

discretisation led to a Parameter-dependent system or a 

distributed parameter system. The PTM was sought to 

transform the distributed parameter system to a system that 

depended on the state vector. The method proposed was 

tested numerically on one and two-dimensional flow models 

governed by PDEs. The results revealed that the PTM can be 

used to recover inverse flow parameters. To assess the 

accuracy and the stability of the proposed method, the 

Adjoint method, and the Conjugate Gradient Method were 

adapted as a measure to the PTM. When the adapted methods 

and the PTM were simulated numerically on a 1D and 2D 

test problems, the results revealed that the PTM is more 

stable with a residual norm-error value of 2.23500 for the 1D 

test problem compared with that of the Adjoint method with 

a norm-error value of 2.66500. For the 2D test case, the 

results also revealed that the PTM was stable with a residual 

norm-error value of 10.98310 compared with that of the 

Conjugate Gradient method with value of 86.56212. 

Although, the estimated parameter values obtained by the 

PTM approximate the true parameter values, the disparities 

in solution between the true and the estimated parameter 

values for both numerical tests considered were very high. 

Also, for the proposed PTM, the time component at times 

needs to be varied to obtain realistic solution estimates. In the 

studied 2D problem, for instance, the initial time step did not 

yield an approximate solution. When the time step was varied 

from � = 0.5	 to � = 1.0	and	1.5  days, the results showed 

better consistency. Though, the estimated parameter values 

using the PTM approximated to the observed parameter 

values, the relative norm error value of the solution was 

observed to be a bit high. For a smooth solution estimate with 

minimal norm-error, some form of regularisation needs to be 

incorporated into the solution to stabilise the system. 
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7. Conclusion 

Although Optimisation techniques have been explored, the 

study revealed that the PTM is capable of yielding realistic 

solution estimates compared with the studied optimisation 

methods. Thus, when a mathematical model is available, and 

measurements data are available, a solution estimate is possible. A 

smooth solution estimate requires some form of regularisation. 

Further investigation should be conducted by incorporating a 

regularisation term or a penalty function to stabilise the 

computations of the flow parameters to improve the convergence. 
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