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Abstract: Malaria is an infectious disease caused by Plasmodium parasite and it is transmitted among humans through bites 

of female Anopheles mosquitoes. In this paper, a new deterministic mathematical model for the endemic malaria disease 

transmission that incorporates imperfect quarantine and optimal control is proposed. Impact of various intervention strategies 

in the community with varying population at time t are analyzed using mathematical techniques. Further, the model is analyzed 

using stability theory of differential equations and the basic reproduction number is obtained from the largest eigenvalue of the 

next-generation matrix. Conditions for local and global stability of disease free, local stability of endemic equilibria and 

bifurcations are determined in terms of the basic reproduction number. The Center manifold theory is used to analyze the 

bifurcation of the model. It is shown that the model exhibit both a backward and a forward bifurcation. Reducing the biting rate 

of the quarantined people is advice able to minimize the spread of endemic malaria disease. The optimal control is designed by 

applying Pontryagins’s Maximum Principle (PMP) with four control strategies namely, insecticide treated nets, screening, 

treatment and indoor residual spray. The best strategy to control endemic malaria disease is the combination that incorporated 

all four control strategies. 
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1. Introduction 

Malaria is the dangerous one among infectious disease. It 

is caused by plasmodium parasites that are transmitted 

among humans through the bites of female Anopheles 

mosquitoes. And it is also the largest burden disease for these 

people living in poor countries, especially, in Sub Saharan 

Africa, causing high mortality and morbidity [1]. In 2018 

(World Health Organization 2019 report), nearly 228 million 

malaria cases occur worldwide, out of which 405,000 million 

die every year [2, 3]. above 40% of the world’s population in 

more than 80 countries and regions are still under the risky of 

contracting malaria. 

About 80% of malaria death are concentrated in 15 

countries most of them in Africa [4, 5]. IN recent, reduction 

in the number of malaria related cases are due to the global 

efforts of the current malaria interventions, such as 

decreasing mosquito breeding sites, sleeping under 

insecticide-treated nets (ITN), indoor residual spraying (IRS) 

with insecticides, are used for reducing malaria vectors and 

their bites, timely treatment with artemisinin-based 

combination therapies (ACTs) and chemoprevention for most 

vulnerable such as intermittent preventive treatment for 

pregnant women (IPTp) recommended by WHO. As global 

effort increases, it is necessary to know how these 

interventions can be implemented alongside one another. 

Quarantine is also one of the public health control strategy 

of infectious diseases. The strategy focuses on isolation of 

infectious individuals from contacting with susceptible 

individuals or healthy populations. This control measure is 

effective to control and eliminate newly emerging infectious 

diseases caused by unidentified infectious agents. 

Optimal control applications are important to approximate 

the efficacy of various policies and control measures. It is 

also important to cost estimation analysis of the examined 

control strategies. The theory of optimal control has been 
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more successfully used in decision making in various 

applications after the development of Pontryagins’s 

maximum principle (1962). 

Mathematical models of the dynamics of malaria 

transmission are useful in providing a better insight into the 

behavior of the disease. These models have played a great role 

in influencing the decision making processes regarding 

intervention strategies for controlling and eliminating the 

spread of malaria. The study of malaria using mathematical 

modeling began in 1911 with Ronald Ross [6, 7]. Others have 

studied the transmission of malaria using SIR model for 

humans and SI for the mosquitoes. These are: Alemu Geleta 

Wedajo, Boka Kumsa Bole, Purnachandra Rao Koya [8, 9], 

Tuwiine, Mugisha and Luboobi [10] developed a compartment 

model for the spread of malaria with susceptible-infected-

recovered-susceptible (SIRS) pattern for human and 

susceptible-infected (SI) pattern for mosquitoes. Yang, Wei, 

and Li have proposed SIR for the human and SI for the vector 

compartment model and define the reproduction number, R
0 

and show the existence and stability of the disease-free 

equilibrium and an endemic equilibrium [11]. 

Feng and Thieme formulated a perfect quarantine model 

where a proportion of infected people stay at home and do 

not infect anybody and showed that the model can give rise 

to sustained oscillations [12]. Hethcote et al. analyzed six 

types of SIQS and SIQR models to explore which one can 

produce periodic solutions [13]. Gumel et al used models to 

examine the effectiveness of quarantine and isolation on the 

control of SARS outbreaks [14]. Pandey et al developed a 

compartmental model for Ebola transmission to assess the 

effectiveness of non-pharmaceutical interventions for 

curtailing the epidemic in Liberia [15]. 

Erdem et al. studied the impact of imperfect quarantine on 

the dynamics of an SIR-type model [16]. X. Jin et al, 

mathematical analysis of the Ross–Macdonald malaria model 

with quarantine using SIQ-SI model type [17]. K. O. Okosun 

et al. (2013) derived and analyzed a malaria disease 

transmission mathematical model that includes insecticide 

treated net, treatment and indoor residual spray and applied 

optimal control strategy to study a possible treatment of 

infective humans that blocks transmission to mosquitoes in 

controlling the spread of malaria [18]. Suresh (1978) 

formulated and analyzed an optimal control problem with a 

simple epidemic model to examine effect of a quarantine 

program [19]. 

The purpose of the study of endemic malaria disease 

model system (1) with imperfect quarantine strategy is to 

reduce the number of susceptible mosquitoes bites from or 

contacts with malaria infectious humans and explore the 

effect of the strategy in the malaria control and elimination. 

2. Model Formulation 

The ordinary differential equations that describe the 

interactions between the human and mosquito population is 

formulated and described by Otieno et al. [20]. In this paper, 

a deterministic compartmental model is formulated and 

analyzed. The model is formulated based on the assumptions 

of [17] by incorporating imperfect quarantine that is, we 

classify the infectious human as Exposed quarantined 

individuals with no disease clinical symptoms for the time 

being, but sharing common environment or home with these 

may have continuous opportunities of bite from malaria 

parasite carrier denoted by �� , Infected quarantined with 

disease clinical symptoms denoted by  ��  and Hospitalized 

(infected isolated individuals these are already getting 

treatment) and denoted by ��. 

The populations are subdivided into compartments 

according to the individual’s disease status. We consider 

Eight-dimensional model. The human population as 

Susceptible  ��, Exposed quarantined  ��, Infected non- 

quarantined  ��,  Infected quarantined  �� , Hospitalized 

(infected isolated) ��, Recovered 
� .  The mosquito 

populations as Susceptible �� , and Infected �� . 
The total population sizes at time t, for humans are 

denoted and defied by  
� ��� = �� + �� + �� + �� + �� +
� and for mosquitoes are denoted and defied by  
� ��� =�� + �� respectively. 

The susceptible humans  ��  are recruited at the rate, Λ� . 

They either die from natural causes at a rate of ��  or move to 

Susceptible quarantined human compartment class ��  and 

Hospitalized human compartment class ��  by acquiring 

malaria through contact with infectious mosquitoes with 

respective rates ���  and  �1 − ���� respectively, Where � 

and �1 − ��  are the rates of susceptible humans joining 

susceptible quarantined and Hospitalized human 

compartments respectively, and  �� = ���� ����� !"#$�#$%& 
is the force of infection from mosquito to human where, �� is 

the rate of probability of human getting infected, � is the 

mosquito contact rate with human and � is mosquito biting 

rate and '  is the rate of reduction of mosquito bites for 

quarantined human compartments. Note that, ' = 1 

corresponds to perfect quarantine, ' = 0 corresponds to no 

quarantine, and 0 < ' < 1  corresponds to imperfect 

quarantine. The Infected non-quarantined individuals move 

to hospitalized (isolated class) with respective rate *  or 

recovery class by getting partial immunity at a rate +. They 

also die because of natural and disease induced death rates 

at  �� and ,�  respectively. The Exposed quarantined 

individuals either die from natural causes at a rate of ��  or 

move to Infected quarantined class  ��  after developing 

disease symptoms at a rate -� . Infected quarantined 

individuals ��  are move to hospitalized (infected isolated) 

with respective rate *.  or recovery class by getting partial 

immunity at a rate +/. They also die because of natural and 

disease induced death rates at  �� and ,�  respectively. 

Hospitalized (infected isolated human class) move to 

recovery class by getting partial immunity at a rate +. or die 

because of natural and disease induced death rates because of 

natural and disease induced death rates at  �� and ,�  respectively. These infectious individuals progress to 

partially immune group (recovered class), either partially 

immune group losses immunity and becomes again 

susceptible at a rate 0 or die from natural death at a rate �� . 
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Susceptible mosquitoes ��  are recruited at the rate  Λ� . 
They either die due to natural death at a rate of ��  or move to 

Infected class �� by acquiring malaria through contact with 

infectious humans with respective rate �� = ����  ��$�.� �!"#$�#$%&��� !"#$�#$%&  where  �� is the Probability of 

a mosquito getting infected. Infected mosquitoes  �� are die 

because of natural and disease induced death rates ��  and ,�  respectively. 

From the law of conservation, the total number of bites by 

mosquitoes equal to the total number of bites on humans (i.e., ��
�  =  ��
� implies 
� = 
��. 

Table 1. State variables of the basic endemic malaria model. 

Symbol Description �����  Number of Susceptible humans at time � �����  Number of Exposed quarantined humans at time � �����  Number of Infected non-quarantined humans at time � �����  Number of infected quarantined humans at time � �����  Number of hospitalized humans at time � 
����  Number of recovered humans at time � �����  Number of Susceptible mosquitoes at time � �����  Number of infectious mosquitoes at time � 
����  Total number of humans populations at time � 
����  Total number of mosquitoes populations at time � 

 

Figure 1. Dynamics of endemic malaria in humans and mosquito 

populations. 

1��1� = 2� + 0
� − ��� + ����� 

1��1� = �����−��� + -����  

1��1� = �1 − ������ − ��� + ,� + * + +��� 

3�#34  = -��� − ��� + ,� + *. + +/���              (1) 

1��1� = *�� + *.�� − ��� + ,� + +.��� 

1
�1� = +�� + +/�� + +.�� − �0 + ���
� 

1��1� = 2� − ��� + �����  

1��1� = ���� − ��� + ,����  

With initial conditions: 

���0� = �5� ≥ 0, ���0� = �5� ≥ 0, ���0� = �5� ≥ 0, ���0� =�5� , ���0� = �5� ,  
��0� = 
5� ≥ 0, ���0� = �5� ≥ 0, ���0� =�5� ≥ 0, 
��0� = 
5� ≥ 0, 
��0� = 
5� ≥ 0 

and 
���� = ����� + ����� + ����� + ����� + ����� +
���� and 
���� = ����� + ����� 

The forces of infection on humans and mosquitoes 

respectively denoted and given by 

�� = ���� ����� !"#$�#$%7&, �� = ����  ��$�.� �!"#$�#$%7&��� !"#$�#$%7&   (2) 

3. Model Analysis 

3.1. Existence and Positivity of Solutions 

In this sub section, the malaria model governed by the 

system of equation (1) is epidemiologically and 

mathematically well posed will be shown. Its feasible region 

is also denoted and given by Ω = 9Ω: × Ω<= ⊂ 9ℝ$@ × ℝ$/ = where, Ω: = A!S:, ED �� �� , H�, 
�& ∈ ℝ$@ : N: ≤ JKμKM and 

Ω< = A�S< , I<, � O ℝ$/ : N<  ≤  JP Q� M. 

Theorem 1 

The solution  R�� , �� , �� , �� , ��, 
�, �� , ��S  of 

the system of equation (1) t is bounded and contained in the 

domain Ω. 

Proof : Let the solution of the system of equations (1) 

together with the positive initial conditions are Ω = R��, �� �� �� , �� , 
�, �� ��S  Also, let  
���� =����� + ����� + ����� + ����� + ����� + 
���� and 
���� =����� + ����� The boundedness of both the human and 

mosquito populations are determined by the boundedness of  
���� and  
���� respectively. 

Boundedness of 
����: Total sum of human compartments 

of the system of equation (1) leads to  3��34 = Λ: −��
����− ,�����. After delating term −,������, then without 

loss of generality we have   3��34  ≤ Λ: − ��
���� or 

equivalently 
3��34 +  ��
���� ≤ Λ: and its general solution is 

given by  
���� ≤ JKμK + T
5�  − JKμKU VWX�−μ:t� . As → ∞,  
����  ≤  JKμK . Hence, the total human population is bounded 

i.e.,  
5� ≤  
����  ≤  JKμK . 

Boundedness of  
���� : total sum of mosquito 

compartments of the system of equations (1) leads to 3��34  = Λ� − ��
� − ,��� . After delating term −,���  then without 

loss of generality we have  3��34  ≤  Λ� − ��
���� , or 

equivalently  3��34 +��
���� ≤ Λ�  and its general solution is 

given by  
���� ≤ JPQ� + T
5� − JPQ� . U VWX�−��t� . As � →∞ 
���� ≤ JPQ� . Hence, the total mosquito population is 

                                                          �ℎ                                �ℎ  

                                                Λℎ                     ��ℎ �ℎ                                         

                                                                                                        -ℎ            ,ℎ  

                                                                         0           �ℎ                  

  �]                         ,]               �1 − ���ℎ�ℎ                          +2                      �ℎ     

                               �]�]                         �]                             +         +1               *1    
                                                                                                        *                        �ℎ   

                                          Λ]                                     �ℎ                       ,ℎ                       ,ℎ    
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bounded i.e.  
5� ≤ 
���� ≤ JPQ�. 

Thus, the solutions of the model variables representing 

human populations  R!S:, ED �� �� , H� 
�&S  are 

confined in the feasible region Ω: =  A!S:, ED �� �� , H� 
�& ∈ ℝ$@ : N: ≤ JKμKM . 

Similarly, the solutions of the model variables representing 

mosquito populations 9��� , ���= are confined in the feasible 

region Ω< = A�S<, ��� O ℝ$/ : N< ≤ JPQ�M. 

This shows that the feasible region of the model system (1) 

is bounded and is given by Ω = R�����, ����� �����, �����, �����, 
����, �����, �����S ∈ℝ$̀ or equivalently Ω = 9Ω: × Ω<= ⊂ 9ℝ$@ × ℝ$/ =. 

The Positivity of the model equations are stated and 

proved in the form of a theorem as follows: 

Theorem 2: The solutions R�����, ����� �����, �����, 
����, �����, �����S  of 

the malaria model system (1) together with the non-negative 

initial conditions are all non-negative for all � > 0. 

Proof: 

Positivity of  �� : Consider 
3b�34  = 2� + ��� + 0
� −���+�����. 

After delating terms   Λ�  and  0
�,  then without loss of 

generality we have an inequality 
3b�34  ≥  −���+����� 

or 3b�34  ≥  −���+����� and its general solution is given by �����  ≥  expf�5� − ��� + ����g ≥ 0 . Therefore  ����� ≥0 for � > 0. 
Positivity of  �� : Consider 

3"#34 =  ����� − ��� + -���� . 

After delating the term �����, then without loss of generality 

we have an inequality 
3"#34  ≥  −��� + -���� and its general 

solution is given by ����� ≥  VWX h�5� − ��� + -���i ≥ 0. 
Therefore �����  ≥  0 for � > 0. 

Positivity of  �� : Consider.  3��34 = �1 − ������ −��� + ,� + * + +��� . After delating the terms �1 − ������ , 

then without loss of generality we have an inequality 3��34  ≥ −��� + ,� + * + +���  and its general solution is 

given by  ����� ≥  VWX f�5� − ��� + ,� + * + +��g ≥ 0. 
Therefore �����  ≥  0 for � > 0. 

Positivity of �� : Consider.,  3�#34 = -��j − ��� + ,� + *. ++/��� .  After delating the terms -��j ,  then without loss of 

generality we have an inequality  3��34  ≥ −��� + ,� + *. ++/���  and its general solution is given by ����� ≥  VWX h�5� −��� + ,� + *. + +/��i ≥ 0. Therefore �����  ≥  0 for � > 0. 
Positivity of   �� : Consider 

3%734 = *�� + *.�� −��� + ,� + +.���.  After delating the terms *��  and *.�� , 

then without loss of generality we have an inequality  3%734  ≥−��� + ,� + +.���  and its general solution is given 

by:  H��� ≥  VWX h�5k − ��� + ,� + +.��i ≥ 0. 
Therefore �����  ≥  0 for � > 0. 

Positivity of  
� : Consider  3l�34 = +�� + +/�� + +.�� −

�0 + ���
� . After delating terms +�� , +/��  and +.�� , then 

without loss of generality we have an inequality 
3l�34  ≥ −�0 + ���
� and its general solution is given by: 
���� ≥ VWX f
5� − �0 + ����g ≥ 0. Therefore 
����  ≥  0 for � > 0. 

Positivity of  �� : Consider 
3b�34 = 2� − ��� + ����� .  After 

delating the term 2�, then without loss of generality we have 

an inequality 
3b�34  ≥  −��� + �����  and its general solution is 

given by  ����� ≥  VWX f�5� − ��� + ����g  ≥  0. 
Therefore �����  ≥  0 for � > 0. 

Positivity of  �� : 
3��34 = ���� − ��� + ,���� .  After delating 

the term ���� , then without loss of generality we have an 

inequality 
3��34  ≥  −��� + ,����  and its general solution given 

by: ����� ≥  VWX f�5� − ��� + ,���g  ≥  0. Therefore �����  ≥ 0 for � > 0. 
3.2. Existence of Disease Free Equilibrium Points 

The disease-free equilibrium point of the model is its 

steady state solutions without infection or disease. Consider 

the disease free-equilibrium points denoted and given by: 

�5 = R��5, ��5 ��5 ��5, ��5, 
�5, ��5, ��5S 

where, ��5,  ��5,  ��5,  ��5,  ��5,  
�5, ��5 and ��5  are the components 

of  �5  and ��5 =  ��5 =  ��5 = ��5 =  
�5 = ��5 = 0 

and the non-infectious are obtained by setting 3b� 34 = 3b� 34 =0 in the malaria model system (1) and solving the resultant 

gives ��5 = m� Q�  and similarly, gives ��5  =   m� Q� . Thus, 

�5 = Am� Q� , 0, 0, 0 0 m� Q� , 0, 0M  

3.3. Reproduction Number 

The basic reproduction number denoted by 
5 is the 

average number of secondary infectious infected by an 

infective individual during his or her whole course of disease 

in case that all of the population are susceptible [21]. It helps 

to explore whether an infection will expand through the 

population or go away from the population. In order to 

determine the stability of system (1) the threshold condition 

for the establishment of the disease is necessary to be 

obtained. Here the reproduction number is calculated using 

the next generation matrix method that is developed by van 

den Driessche and Watmough [22]. The local asymptotic 

stability occur if 
5 < 1 and instability occur if 
5 > 1. Now 

let the system (1) be rearranged by beginning with the 

infected classes as follows: 

Let n = !ED, I:, ID, �� , I<, R:, �� , ��&p
. Then 

the new infections be identified from all other class 

transitions in the population. 

The infected classes among all the classes of both human 

host and mosquito vector are  ED,  I:,  ID, H� and  I< . The 

vector of rates of the appearance of new infections in each 

compartment is denoted by q. Further, r =  r$ + r� where r$ is the vector rate of transfer into the particular 

compartment and r� is the vector rate of transfer out of the 
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particular compartment. In the model equations it is clear that there are four compartments for the infected. Thus, 

q�ns�  =  
tu
uuu
uv ������1 − μ�����00����00 wx

xxx
xy
 and r�ns� = 

tu
uu
uu
uv ��� + -������� + φ + ,� +  +���−-�-�� + � +/ + �� + φ. + ,����−φ�� − φ.�� + � +. + �� + ,������� + ,����00 wx

xx
xx
xy
 

where, 

q =  {|�}~��}~ ��5�  =  
tuu
uuv

0000�.� �����b��b��

0000����b��b��

0000�.� �����b��b��

0000�.� �����b��b��

������1 − μ�����000 wxx
xxy and 

r =  {��}~��}~ ��5� = 

tuu
uv��� + -��0−-�00

0� + + �� + φ + ,��0−*0
00� +/ + �� + *. + ,��−*.0

000� +. + �� + ,��0
0000��� + ,��wxx

xy
 

qr�. =
tu
uu
uv 0000�.� �����b�������$��� ������b��

0000����b��!��$��.� �& ����b��

0000�.� �����b�����$��� ����b��

0000�.� �����b�� ��b��

����Q���.���������000 wx
xx
xy

 and 1V��qr�. −
���� = 0, then the dominant eigen value of qr�. is 

� = � ��������Q�J�  ���������� Q�J� h�/�1 − '�!���� + -���� + *.�&� +  �.��!�� + *�1 − '�&�1 − ��i. 
Therefore; the basic reproduction number of the model system of (1) is denoted and given by 


5 = � ��������Q�J�  ���������� Q�J� h�/�1 − '�!���� + -���� + *.�&� +  �.��!�� + *�1 − '�&�1 − ��i                (3) 

Where, �. = �� + -� �/ =  + + �� + φ + ,�, �� =  +/ + �� + *. + ,�, �� = +. + �� + ,�, �� = �� + ,�  

3.4. Global Stability of the Disease-Free Equilibrium Point 

To establish the global stability of disease free-equilibrium two conditions are considered. Castillo-Chavez et-al [23]. 

The model system (1) can be re-written in the following form 1n1� = q�n, �� 

1�1� = ��n, ��, ��n, 0� = 0 

n = !��5 
�5 ��5&p
 denote the different compartments of non-infected individuals, � = !��5 ��5 ��5 ��5 ��5&p

 

denote the different compartments of infectious individuals and �5 =  �n∗, �∗� = �n∗, 0�, where n∗ = �m�Q� 0 m�Q�� denotes the 

disease free equilibrium of the model. 

The point �n∗, 0� is globally asymptotically stable for the model provided that  
5 < 1 and the following conditions hold. 

(i) For 
3}34 = q�n, 0�, �n∗, 0� is globally asymptotically stable 
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(ii) G �n, �� = �� − ���n, �� ≥ 0 for all �n, �� ∈ � 

Theorem 3 The disease free-equilibrium �5 of model system (1) is globally asymptotically stable in � if 
5 < 1 an unstable 

if 
5 > 1. 
Proof: 

i) Solving the differential equation 
3}34 = q�n, 0� = �2� − ����5−�0 + ���2� − ����5

 gives 

��5��� = m�Q� − m�Q� V�4Q� + ��5�0�V�4Q� , ��5��� = m�Q� − m�Q� V�4Q� + ��5�0�V�4Q� and 
�5��� = 
�5�0�V�4��$Q��. 
 As � → ∞, ��5��� → m�Q� ,  ��5��� → m�Q� and 
�5��� → 0. Thus, �n∗, 0� is globally and asymptotically stable. 

ii) To show �� �n, �� = �� − ��n, ��, 

Let ��n, �� =
�
 ¡

−�.��−�/��-��� − ����*�� + *.�� − ����  −���� ¢
£¤ 

� = ¥��n, ��¥� �n∗, 0� =
�
 ¡

−�.0-�00
0−�/0*0

00−��*.0
000−��0

0000−��¢
£¤ 

Which is Metzler-matrix whose non-negative off-diagonal elements.  

�� =  
�
 ¡

−�.0-�00
0−�/0*0

00−��*.0
000−��0

0000−��¢
£¤

�
 ¡

���������� ¢
£¤ 

 �¦  �n, �� =
�
  
¡ −�.!�� − ��&−�/��� − ���-�!�� − ��& − ��!�� − ��&*��� − ��� + *.!�� − ��& − ��!�� − ��&−����� − ��� ¢

££
¤ ≥ 0 

That is,  �¦  �n, ��  = �0 0 0 0 0�p. Thus,  �¦  �n, �� =  0. 

3.5. Existence of Endemic Equilibrium Points 

Let the endemic equilibrium point be denoted by  �∗∗ = 9��∗∗, ��∗∗ ��∗∗, �∗∗, 
�∗∗, ��∗∗, ��∗∗= . It is the non-trivial 

positive equilibrium of the malaria model system (1). Each component of �∗∗ is obtained by setting the right hand sides of all 

model system (1) equal to zero i.e. 2� + 0
�∗∗ − ���∗∗ + �����∗∗ = 0 �1 − §.����∗∗��∗∗ − ��� + -����∗∗ = 0 �1 − ����∗∗��∗∗ + ¨*��∗∗ − ��� + ,� + +.���∗∗ = 0   -���∗∗ − ��� + ,� + *. + +/���∗∗  = 0 *��∗∗ + *.��∗∗ − ��� + ,� + +.���∗∗ = 0 +��∗∗ + +/��∗∗ + +.�∗∗ − �0 + ���
�∗∗ = 0 2� − ���∗∗ + �����∗∗ = 0 ��∗∗��∗∗ − ��� + ,����∗∗ = 0 

                                                (4) 

Up on computing the resultant equations as listed above, the components of  �∗are obtained as follows: 

��∗∗ = 2���.�/�������∗∗ + �����.�/���� − 0f�/-��*.+. + ��+/�� + �.���*+. + ��+��1 − �� g��∗∗ 
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��∗∗ = ���∗∗��∗∗m.  

��∗∗ = �1 − ����∗∗��∗∗�/  

��∗∗ = -����∗∗��∗∗�.��  

 ��∗∗ = f�/*.-�� + �.��*�1 − ��g��∗∗��∗∗�.�/����  


�∗∗ = f�������ª�$��ª��Q$������ª�$��ª��.���g«�∗∗b�∗∗
���������                                                       (5) 

��∗∗ = 2���$ + �� 

��∗∗ = ��∗∗2������∗∗ + ��� 

��∗∗ = ���� ��∗∗
��∗∗� !"#∗∗$�#∗∗$%¬∗∗&                                                                       (6) 

��∗∗ = ���� ��∗∗$�.� �!"#∗∗$�#∗∗$%¬∗∗&��∗∗� !"#∗∗$�#∗∗$%¬∗∗&                                                                   (7) 

Where, 
�∗∗ = ��∗∗ + ��∗∗ + ��∗∗ + ��∗∗ + �­∗∗ + 
�∗∗ 

After substation of (5) in to (6) and (7), the re-arranged and simplified of (6) and (7) in terms of  ��∗∗ gives the following 

quadratic equation  

®���∗∗�/ + ¯��∗∗ + ° = 0                                                                      (8) 

Where, 

® = 2����± + ²�����± + ²� + ����²� 

¯ = 2���.�/����f2���± + ²� + ����²g − �/�/����Λ�²���.�/���� − 0±� 

° =  �.�/��������2��1 − 
5/� 

± = �/-��*.+. + ��+/�� + �.���*+. + ��+��1 − §� 

² = �h�/�1 − '�!���� + -���� + *.�&� +  �.��!�� + *�1 − '�&�1 − ��i 
In (8)  ��∗∗ = 0 corresponds to the disease free-equilibrium �5 . If ��∗∗ ≠ 0 , then existence of endemic equilibria is 

computed by quadratic equation ®���∗∗�/ + ¯��∗∗ + ° = 0 . 

Note that that the coefficient ® > 0, ° > 0 if  
5 < 1 ° < 0 if  
5 > 0. The coefficient ¯ may expressed as 

¯ = �/�/.�//�/���/����2��� �
/́ − 
5/� 

Where, 
´ = � Q��/µ$¶�����������������Q�m�,  · = ��.�/��������2��± + ²�,  � = ����²���.�/��������2� + ����0±�  
Thus, the number of endemic equilibria of model (1) 

depends on the coefficients ®, ¯ and ° as follows: 

Theorem 4 The model system (1) has: 

(i) A unique endemic equilibrium if ° <  0 that is, 
5 > 1. 

(ii) A unique endemic equilibrium if ¯ < 0 and ° = 0 or ¯ <  0, ° > 0 and △ = ¯/ − 4®° = 0 

(iii) Two endemic equilibria where if ¯ <  0, ° >  0 and △ =  ¯/ − 4®° > 0. 

(iv) there are no endemic equilibria otherwise 

From epidemiological perspective, condition (iii) of 

theorem 4 above implies that,  
5 < 1 has no longer 

guarantee for the elimination of the disease in the population. 

A new small threshold or saddle-node threshold for  
5 must 

be determined. To this aim we now express condition (iii) of 

theorem 4 in terms of basic reproduction number  
5  as 

follows. Not that, coefficient ¯ < 0  is equivalent to  
5  > 
´  and ° >  0 is equivalent to 
5  < 1. And also ¯/ − 4®° >0 is equivalent to 

®5
5� + ¯5
5/ + °5 = 0                    (9) 

Where, 

®5 = ����.��/��������/��/Λ�/��/ > 0 
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¯5 = �/�/.�//�/���/����Λ��2�®�� − ·� − ����  

°5 = �/ where, � = ����²���.�/��������2� + ����0±� > 0 

Equation (9) admits positive real roots if and only if ¯5 < 0 and △5 =   ¯5/ − 4®5°5 ≥ 0. 

We can write 

△.= .@�����������������Q��J� � ºf»�Q���µ$¶�gQ��  Where, ¼ = ®�� − · 

Choosing ¼ < 0 ensures that ®�� − �· + �� < 0 and setting 


± = ¾−¯5 ± √△.2®5 = ¾ ���/�/.�//�/���/����Λ� À�−�¼ − ��!1 ± √−¼&Á 

It follows that condition (iii) of theorem 4 is equivalent to 
´ < 
5 < min�1, 
�� or max�1, 
$� < 
´ < 
5 < 1. 

4. Bifurcation Analysis 

The sub-threshold occurrence of multiple endemic equi 

libria stated in Theorem 4, is the result of forward or back 

ward at 
5 = 1. Now, we study the Centre manifold near the 

criticality by using the approach developed in [24, 25, 26]. 

Based on Center Manifold theory (Gumel and Song, 2008; 

Castillo-Chavez and Song, 2004) and general Centre 

manifold theory [27], we carry out a bifurcation analysis of 

model system (1) at  
5  = 1. Not that, the normal form 

representing the dynamics of the system on the Centre 

manifold is given by ÂÃ = ®Â/ + ¯ÄÂ, where, 

® = �/ . ÅÆÆÇ�W5, 0�È/ = ./ ∑ ]ÊÈsÈË {�ÌÍ{Æ~ðÆÏ �W5, 0� ≠ 0ÐÊ,s,ËÑ.  for j =1, 2…, n                      (10) 

¯ = r. ÅÆÒÇ�W5, 0�È = ∑ ]ÊÈs {�ÌÍ{Æ~ðÒ �W5, 0� ≠ÐÊ,sÑ. 0 for i =1, 2…, n                                   (11) 

Here, the symbol Ä denotes a bifurcation parameter to be 

chosen, ÇÊ s denote the right hand side of system (1), W 

denotes the state vector, W5 the disease-free equilibrium E0, ÅÆ  denotes the differential operator with respect to W , ÅÒ  

denotes the differential operator with respect to Ä, and È and ]  denote the right and left eigenvectors, respectively, 

corresponding to the null eigenvalue of the Jacobian matrix 

of system (1), evaluated at W5 for Ä = 0. 
To apply the above result, the following simplification and 

change of variables are made on system (1). Let �� = W. , �� = W/ , �� = W� , �� = W� , �� = W� , 
� = W@ , �� = WÓ , and �� = W`, so, 
 � = W . + W / + W � + W � + W � +W @  and 
 � = W Ó, + W ` . Mor over, by using the vector 

notation W = � W ., W /, W �, W �, W �, W @, W Ó, W `,�p , 

the system (1) can be written in the 

form  3Æ34 = ! Ç ., Ç /, Ç �, Ç �, Ç �, Ç @, Ç Ó, Ç `,&p
 as 

follows 

1W.1� = Ç. = 2� + 0
� − Ô���� W`W . + W / + W � + W � + W � + W @ − '�W/ + W� + W�� + ��Õ W. 

1W/1� = Ç/ = ����� W`W . + W / + W � + W � + W � + W @ − '�W/ + W� + W�� W.−��� + -��W/ 

1W�1� = Ç� = �1 − ������ W`W . + W / + W � + W � + W � + W @ − '�W/ + W� + W�� W. − ��� + ,� + * + +�W� 

3Æ�34  = Ç� = -�W/ − ��� + ,� + *. + +/���  

1W�1� = Ç� = *W� + *.W� − ��� + ,� + +.�W� 

1W@1� = Ç@ = +W� + +/W� + +.W� − �0 + ���W@ 

1WÓ1� = ÇÓ = 2� − À���� W� + �1 − '��W/ + W� + W��W . + W / + W � + W � + W � + W @ − '�W/ + W� + W�� + ��Á WÓ 
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1W`1� = Ç̀ = ���� W� + �1 − '��W/ + W� + W��W . + W / + W � + W � + W � + W @ − '�W/ + W� + W�� WÓ − ��� + ,��W` 

We choose the rate of transmission of infection from an infectious mosquito to a susceptible human,  ��, as the bifurcation 

parameter. We observe that 
5 = 1 is equivalent to: 

 �� = ��∗ = 
����������Q�J�������h���.� �!����$�����$���&Q$ ����!��$��.� �&�.�Q�i 

So that the disease free-equilibrium  �5 is locally asymptotically stable when  �� < ��∗ and unstable when  �� > ��∗. Hence,  �� = ��∗  is a bifurcation value. 

The Jacobian matrix of system (1) evaluated at �5 for  �� = ��∗ is given by 

Ö!�5, ��∗& =  
�
  
  
¡−�� 0 0 0 0 0 0 −Ö.`0 −�. 0 0 0 0 0 Ö/`0 0 −�/ 0 0 0 0 Ö�`0 -� 0 −�� 0 0 0 00 0 * *. −�� 0 0 00 0 + +/ +. −� 0 00 −ÖÓ/ −ÖÓ� −ÖÓ� −ÖÓ� 0 −�� 00 Ö`/ Ö`� Ö`� Ö`� 0 0 −��¢

££
££
¤

                                     (12) 

Where, 

 Ö.` = ����∗ , Ö/` = �����∗, Ö�` = �1 − ������∗, ÖÓ� = Ö`� =  ����b�� b��  

ÖÓ/ =  ÖÓ� =  ÖÓ�  =  Ö`/ = Ö`� =  Ö`� =  �.� �����b�� b��  

det�Ö��5� − ��@� = 0, Since the first and seventh columns contain only diagonal terms they give two negative eigenvalues 

i.e., �. = −��, �/ = −��, then deleting rows and columns of the first and fifth of Ö��5� we have: 

Ö.!�5,��∗& =
�
  
¡−�. 0 0 0 0 Ö/`0 −�/ 0 0 0 Ö�`-� 0 �� 0 0 00 * *. −�� 0 00 + +/ +. −� 0Ö`/ Ö`� Ö`� Ö`� 0 −��¢

££
¤

                                                 (13) 

In the same way, the fifth column of Ö.��5� contains only diagonal term which also forms a negative eigenvalue i.e., �� = −�. The remaining five eigenvalues are obtained from the sub-matrix 

Ö/��5, ��∗� =
�
 ¡

−�. 0 0 0 Ö/`0 �/ 0 0 Ö�`-� 0 −�� 0 00 * *. −�� 0Ö`� Ö`� Ö`� 0 −��¢
£¤                                                    (14) 

The eigen values of the matrix Ö/��5� are the roots of the characteristic equation 

λ� + A.λ� + A�λ� + A/λ/ + A.λ +  A� = 0                                                    (15) 

Where, 

�. =  �. + �/ + �� + �� + �� 

�/ = �.�/ +  ���� + ��. + �/���� + ��� + ����. + �/ + �� + ��� − �����/�/��2�   ��2� f�1 − '�� + �1 − ��g 
�� =  �.�/ +  ���� + ��. + �/���� + ��� + ����. + �/ + �� + ���

− �����/�/��2�   ��2�  f��/ + �� + �� + -��� + �*�1 − '� + �. + �� + ����1 − ��g 
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�� =  �. + �/ + �� + �� + ��f������. + �/� + �.�/��� + ���g
− �����/�/��2�   ��2�  Th!�/�� + ����/+��� + -��*. + �/ + ���&i�
+ !�*�1 − '� + �����. + ��� +  �.��&�1 − ��U 

�� = �1 − 
5/��.�/������ 

λ�λ� + A.λ� + A�λ/ + A/λ + A.� = 0                                                                    (16) 

Thus, (16) implies that the Jacobian Ö��5, ��∗� of the 

linearized system has a simple zero eigenvalue and the other 

eigenvalues have negative real part. Therefore the disease-

free equilibrium E0 is a nonhyperbolic equilibrium. To 

compute the coefficients (10) and (11), we determine the 

right and left eigenvectors corresponding to the zero 

eigenvalue. The components  Ès , for Ù = 1, … , 8, of the right 

eigenvectors  Ès ′Ý are given by 

−��È. + 0È@ − ����∗È` = 0 

−�.È/ + �����∗È` = 0 

−�/È� + ��1 − �����∗È` = 0 

-�È/ − ��È� = 0 

*È� + *.È� − ��È� = 0 

+È� + +/È� + +.È� − �È@ = 0 

−���� ��5��5 È� − �1 − '����� ��5��5 �È/ + È� + È�� − ��ÈÓ = 0 

���� ��5��5 È� + �1 − '����� ��5��5 �È/ + È� + È�� − ��È` = 0 

Analogs the components of ]s, for Ù = 1, … , 8 of the left eigenvector are ] is given by 

−��].  =  0 

�.]/ + -�]� − �1 − '����� ��5��5 �ÈÓ − È`�  =  0 

−�/]� + *]� + +]@ − ���� ��5��5 �ÈÓ − È`�  = 0 

−��]� + *.]� + +.]@ − �1 − '����� ��5��5 �ÈÓ − È`�  =  0 

−��]� + +/]@ − �1 − '����� ��5��5 �ÈÓ − È`�  =  0 

0]. − Þ�]� − �]@  =  0 

−��]Ó  =  0 

−����∗]. + �����∗]/ + ��1 − �����∗]�  − ��]`  =  0 

There fore; for È` > 0, ]` > 0 we have, 

È. = ����∗ Tf�������ª�$��ª��Q$������ª�$��ª��.���g � ���������Q����������  U È`, 

È/  =  �Q���∗�� È`, È� = �.�Q�����∗�� È` È� = ���Q���∗���� È`, È� = ����∗ f����Q$������.�Q�g�������� È` 

, È@ = ����∗ f�������ª�$��ª��Q$������ª�$��ª��.���g ��������� È`, ÈÓ = − ��Q�  and 



 Mathematical Modelling and Applications 2021; 6(2): 29-55 39 

 

]. = ]@  = ]Ó =  0, ]/ =  �.� �����b��b�� ��������$���$���������� � ]` 

]� =  ����b��b�� �����.� �$���������� � ]`, ]� = �.� �����b������b�� �*. + ��� ]` ]� = �.� �����b����b��  

By considering only the non-zero components of left eigenvector ] and the non-zero second-order partial derivatives at the 

disease free-equilibrium point, then we have the following 

(i) computation of  ® 

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 2,…, 8 

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1,2,…,7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì� {ÆßðÆ� �W5, 0� = − �.� �Q����b��  

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1,2,…,7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì�{ÆßðÆ� �W5, 0� = − Q����b��  

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1,2,…,7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì�{ÆßðÆ� �W5, 0� = − �.� �Q����b��  

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1,2,…,7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì�{ÆßðÆ� �W5, 0� = − �.� �Q����b��  = 

{�Ì�{ÆàðÆÏ �W5, 0� = 0 for j = 1,2,…,7 and 
{�Ì�{ÆàðÆß �W5, 0� = 

{�Ì� {ÆßðÆà �W5, 0� = − Q����b��  

{�Ì�{ÆáðÆÏ �W5, 0� = 0 for j = 1, 2,…, 8 

. {�Ì�{ÆßðÆÏ �W5, 0� = 0 for j = 1, 7, 8 

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 2,…, 8 

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 2,…, 7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì� {ÆßðÆ� �W5, 0� = − �.� ��.�Q�����b��  

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 2,…, 7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì�{ÆßðÆ� �W5, 0� = − �.�Q�����b��  

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 2,…, 7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì�{ÆßðÆ� �W5, 0� = − �.� ��.�Q�����b��  

{�Ì�{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 2,…, 7 and 
{�Ì�{Æ�ðÆß �W5, 0� = {�Ì�{ÆßðÆ� �W5, 0� = − �.� ��.�Q�����b��  = 

{�Ì�{ÆàðÆÏ �W5, 0� = 0 for j = 1, 2,…, 7 and 
{�Ì�{ÆàðÆß �W5, 0� = 

{�Ì� {ÆßðÆà �W5, 0� = − �.�Q�����b��  

{�Ì�{ÆáðÆÏ �W5, 0� = 0 for j = 1, 2,…, 8 

{�Ì�{ÆßðÆÏ �W5, 0� = 0 for j = 1, 7, 8 

{�Ìß{Æ�ðÆÏ �W5, 0� = 0 for j = 1, 6, 7, 8 and 
{�Ìß{Æ�ðÆ� �W5, 0� = − ����b��b�� , 

{�Ìß{Æ�ðÆ� �W5, 0� = {�Ìß{Æ�ðÆ� �W5, 0� = {�Ìß{Æ�ðÆ� �W5, 0� = − �.� �����b��b�� , 

{�Ìß{Æ�ðÆÏ �W5, 0� = 0 for j =1, 8 and 
{�Ìß{Æ�ðÆ� �W5, 0� = {�Ìß{�Æ�� �W5, 0� = {�Ìß{Æ�ðÆ� �W5, 0� = − �.� �����b��b�� , 

{�Ìß{Æ�ðÆ� �W5, 0� = {�Ìß{Æ�ðÆà �W5, 0� = − ��.� �����b��b��� , {�Ìß{Æ�ðÆá �W5, 0� = �.� �����b��  
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{�Ìß{Æ�ðÆÏ = 0 for j =1, 8 and 
{�Ìß{Æ�ðÆ� �W5, 0� = {�Ìß{Æ�ðÆ� �W5, 0� = − �.� �����b��b�� , {�Ìß{�Æ�� �W5, 0� = {�Ìß{Æ�ðÆà = − ����b��b�� , 

¥/Ç̀¥W�ðW. = − ������5��5/ , ¥/Ç̀¥W�ðWÓ = ������5  

{�Ìß{Æ�ðÆÏ = 0 for j= 1,8 and 
{�Ìß{�Æ�� �W5, 0� = {�Ìß{Æ�ðÆ� �W5, 0� = −2 �.� ������b��b��� , {�Ìß{Æ�ðÆà �W5, 0�  = − �.� �����b��b���  

¥/Ç̀¥W�ðWÓ �W5, 0� = − ������5��5  

{�Ìß{Æ�ðÆÏ = 0 for j=8 and 
{�Ìß{�Æ�� �W5, 0� = −2 �.� ������b��b��� , {�Ìß{Æ�ðÆà =− �.� �����b��b��� , {�Ìß{Æ�ðÆá = �.� �����b��  

{�Ìß{ÆàðÆÏ �W5, 0� = 0 for j = 1, 6, 7, 8 

{�Ìß{ÆáðÆÏ �W5, 0� = 0 for j = 1, 6, 7, 8 

{�Ìß{ÆßðÆÏ �W5, 0� = 0 for j = 1, 2, …,8 

® = 2]/È/È` ¥/Ç/¥W/ðW` �W5, 0� + 2]/È�È` ¥/Ç/¥W�ðW` �W5, 0� + 2]/È�È` ¥/Ç/¥W�ðW` �W5, 0� + 2]/È�È` ¥/Ç/¥W�ðW` �W5, 0�
+ 2]/È@È` ¥/Ç/¥W`ðW` �W5, 0� 

+2]/È/È` {�Ì�{Æ�ðÆß �W5, 0� + 2]/È�È` {�Ì�{Æ�ðÆß �W5, 0� + 2]/È�È` {�Ì�{Æ�ðÆß �W5, 0� + 2]/È�È` {�Ì�{Æ�ðÆß �W5, 0� +
2]/È@È` {�Ì�{ÆßðÆß �W5, 0� + 

+2]`È.È� {�Ìß{Æ�ðÆ� �W5, 0�+2]`È.È/  {�Ìß{Æ�ðÆ� �W5, 0� + 2]`È.È� {�Ìß{Æ�ðÆ� �W5, 0� + 2]`È.È� {�Ìß{Æ�ðÆ� �W5, 0�+
./ ]`È// {�Ìß{�Æ�� �W5, 0�+ 

2]`È/È� {�Ìß{Æ�ðÆá �W5, 0�  + 2]`È/È� {�Ìß{Æ�ðÆ� �W5, 0� + 2]`È/È� {�Ìß{Æ�ðÆ� �W5, 0� + 2]`È/È@ {�Ìß{Æ�ðÆà �W5, 0� +
2]`È/ÈÓ {�Ìß{Æ�ðÆá �W5, 0� + 

2]`È�È. ¥/Ç̀¥W�ðW. �W5, 0� + 2]`È�È� ¥/Ç̀¥W�ðW� �W5, 0� + 2]`È�È� ¥/Ç̀¥W�ðW� �W5, 0� + 2]`È�ÈÓ ¥/Ç̀¥W�ðWÓ �W5, 0�
+ 12 ]`È�/ ¥/Ç̀¥/W�/ �W5, 0� 

+2]`È�È� {�Ìß{Æ�ðÆ� �W5, 0� + 2]`È�È@ {�Ìß{Æ�ðÆà �W5, 0� +2]`È�ÈÓ {�Ìß{Æ�ðÆá �W5, 0�+
./ ]`È�/ {�Ìß{�Æ�� �W5, 0�+2]`È�È@ {�Ìß{Æ�ðÆà �W5, 0� +

2]`È�ÈÓ {�Ìß{Æ�ðÆá �W5, 0� 

® = �/�/È/̀]`�������.�/������ �Ψ − Γ� 

Where, 

Ψ = �5�� Ô1 − qÓ�.�/�����Õ 

Γ = ����q.�.�/������ ��q5 + q/� + �/f����q� + -����q� + *.q@�g� + �.�����q� + *q@��1 − �� 

q5 = �/�1 − '�!���� + -���� + *.�&� + �.��!�� + *�1 − '�&�1 − �� > 0 
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q. = �/-��1 − '���� + *.�� + �.��!���� + �/*�1 − '�&�1 − �� > 0 q/ = �/-��+.�� + +/*.�� + �.���+�� + +/*��1 − �� > 0 

q� = 
������������� f��5 + �/-��1 − '��+.�� + +/*.�� +  �.���+�� + +/*��1 − �� g + �.� ���Q�b� > 0 

q� = �����.�/���� T�/f��1 − '���� + -�*.� + -��+.�� + +/*.�g� +  �.�� �+�� + +/ + �!�1 − '�* + ��&� �1 − ��U > 0 

q� = �1 − '�������.�/���� h�/-�f�2�1 − '� + +.�*. + ���2�1 − '� + +.�g� + �1 − ���.��f+� + *�2�1 − '� + +/�gi + ������ > 0 

q@ = �1 − '�������.�/���� h�/-�f*.�� + +/� + +.��g� + �1 − ���.��f+� + �*�� + +/� + +���gi + �1 − '�����5
����5 > 0 

qÓ = ����0f�/-��+.�� + +/*.�� +  �.���+�� + +/*��1 − ��g > 0 

(ii) Computation of   ¯ 

{�Ì�{Æ~ð�� �W5, 0� = 0 for i = 1, 2, …,7 and 
{�Ì�{Æßð�� �W5, 0� =  ��� 

{�Ì�{Æ~ð�� �W5, 0� = 0 for i = 1, 2, …,7 and 
{�Ì�{Æßð�� �W5, 0� =  �1 − ���� 

¯ = ]/È` ¥/Ç/¥W`ð�� �W5, 0� + ]�È` ¥/Ç�¥W`ð�� �W5, 0�
= �/�/È`]`�����.�/������ T�/�1 − '�!���� + -���� + *.�&� + �1 − ���.f���� + *�/�1 − '�gU > 0 

Theorem 5: If Ψ > 0 and Ψ > Γ , then ® > 0  and Ψ <0 ensures that ® < 0.  If ® > 0  and ¯ > 0 , then the model 

system (1) undergo a backward bifurcation at 
5  = 1 , 

otherwise it will exhibit a forward bifurcation. Hence the 

endemic equilibrium �∗∗ is locally asymptotically stable. 

5. Analysis of the Model with Optimal 

Control 

In this section, on model system (1) we also incorporate 

four time dependent control measures namely, (i) the use of 

insecticide treated bed net (ITN)  u.�t� =  u. as preventive 

measure i.e., to reduce the number of bites from mosquitoes 

as they physically provide a barrier between the infectious 

mosquitoes and the susceptible humans, and also to reduce 

the population of the mosquitoes by killing them after they 

land on the treated net. (ii) the effort of screening of 

quarantined individuals   u/�t� =  u/ , which helps them to 

identify whether or not they are with disease symptom, (iii) 

treatment with drugs  u��t� =  u� , treating individuals who 

developed symptoms of the disease, and (iv) the use of 

Indoor Residual Spray (IRS),  u��t� =  u� as preventive 

measure i.e., insecticide spray on the breeding site of 

mosquitoes reduces the number of mosquito populations by 

killing these rest indoors after feeding. 

After incorporating the above stated controls in to the 

basic model system (1) we get the following modified state 

equations: 

1��1� = 2� + +0
� − ��1 − §.��� + ����� 

1��1� = �1 − §.������−�-� + §/��� − ���� 

1��1� =  �1 − §.��1 − ������ − �* + 1 − §/��� − ��� + ,� + +��� 

3�#34  = �-� + §/��� − !*. + �1 − §/�&�� − ��� + ,� + +/���  

3%734 = !* + �1 − §/�&�� + !*. + �1 − §/�&�� − �+. + ¨§���� − ��� + ,����                                     (17) 

1
�1� = +�� + +/�� + �+. + ¨§���� − �0 + ���
� 
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1��1� = 2� − ��1 − §.��� + �� + ,§. + �§����  

1��1� = �1 − §.����� − ��� + ,� + ,§. + �§����  

The purpose of the study of endemic malaria disease 

model system (1) with optimal control is to minimize the 

numbers of Infected non-quarantined, hospitalized (infected 

isolated) humans, and infected mosquitoes and also increase 

the number of recovered humans furthermore, explore the 

best combinations of the strategy in malaria control and 

elimination. For this end, its objective function is defined 

based on the approach [28]. Thus, the objective function of 

(17) is 

Ö�§., §/, §�,  §� � = å �1.�� + 1/�� + 1��� + 1��� + 1��� + º�/ §./ + º�/ §// + º�/ §�/ + º�/ §�/� 1�4æ5      (18) 

Where, 1., 1/ , 1� , 1� , and 1�, are the balancing cost factors due to scale and  ¼.,  ¼/, ¼�, and  ¼�  denote the weighting 

constants for making uses of control strategies using §., §/, §�, and  §� controls. Consequently, we attempt to expect an 

optimal control §. ∗ , §/`∗ , §�∗  and §�∗  such that Ö� §. ∗ ,  §/`∗ ,  §�`∗ ,  §�`∗ � = �ÙèÖ�§., §/, §�, §��, é = 9�§., §/, §�, §��: 0 ≤  §s ≤ 1, Ù = 1, 2, 3, 4=                                   (19) 

The Hamiltonian H, associated with problems (17) – (19) is  

� = !�� , �� , �� , �� , �� , 
�, �� , �� , �& = ²!�� , �� , �� , �� , �� , §., §/, §�, §�, �& + �. 3b�34 + �/ 3"#34 + �� 3��34 + �� 3�#34 + �� 3%734 +�@ 3l�34 + �Ó 3b�34 + �` 3��34                                                                                     (20) 

Where, ²!�� , �� , �� , �� , �� , §., §/, §�, §�, �& = 1.�� + 1/�� +1��� + 1��� + 1��� + ./ ∑ ¼s§s/�. , for i=1, 2, 3, 4 and �s , for 

i= 1, 2, 3, 4, 5, 6, 7, 8 are adjoint variable of functions to 

be determined. The optimal control must satisfy the 

necessary conditions that is emanated from the 

Pontryagins’s Maximum Principle [27, 28]. This concept 

transpose (1) and (17) into a type of problem characterized 

with minimizing pointwise the Hamiltonian H respect to 

§., §/, §� and §�. 
Theorem 6. Given an optimal strategy  §s∗ = � §. ∗ ,  §/ ∗ ,  §/ ∗ ,  §� ∗ � ∈  é  such that Ö� §. ∗ ,  §/ ∗ ,  §/ ∗ ,  §� ∗ � = �ÙèÖ�§., §/, §�, §�� and optimal state 

variables solutions ��∗, ��∗, ��∗ ,  ��∗, ��∗,  
�∗ ,  ��∗, and  ��∗  with 

associated optimal control � §. ∗ ,  §/ ∗ ,  §/ ∗ ,  §� ∗ � , then there 

exists adjoint variables λ., λ/, λ�,  λ�,  λ�, λ@,  λÓ, λ` satisfying 

the following adjoint equations 

ëìíëî = − ïðïñ                                                                                     (21) 

Where i = 1, 2, 3, 4, 5, 6, 7, 8 and with transversality conditions 

�s!�Ì& = 0 for Ù = 1, 2, 3, 4, 5, 6 7, 8                                                                  (22) 

Proposition 1: The optimal control � §. ∗ ,  §/`∗ ,  §�`∗ ,  §�`∗ � that minimize the objective function over é is given by 

ïðïò~ = 0, at us =  §s∗ where Ù = 1, 2, 3, 4:                                                              (23) 

§.∗ = �Ùè Amax �0, b�∗«�∗ f�«��«��$Q�«��«��g$ «�∗ b�∗�«á�«ß�$ô�b�∗«á$��∗«ß�º�  � , 1M                                               (24) 

§/∗ = �Ùè A max �0, ����«��«��$���#�«��«��$��«�$«��"#∗ º� �, 1�M                                                     (25) 

§�∗ =  �Ùè Amax �0, %7∗ª�õ�«à�«��º� � , 1�M                                                              (26) 

§�∗ =  �Ùè Amax �0, ��«áb�∗$«ß��∗�º� � , 1�M                                                             (27) 

Proof: 

From theorem 1 and 2 above, boundedness and 

positivity of the state solutions respectively are shown. 

From [29, 30], the condition of possible existence of an 

optimal control is based on the convexity of the integrand 

of Ö�§., §/, §�, §��  with respect to  §., §/, §�  and §�, and Lipschitz property of the state system with respect 

to state variables. The Hamiltonian function determines at 

the optimal control level leads to the adjoint variables. 

Thus, the adjoint equations can be rearranged as 
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 3«� 34  = �1 − §.��� Ô b��� �  !"#$�# %7& − 1Õ !��. − ��� + ���/ − ���& +���. 

1�/ 1�  = −1. + + �1 − §.��1 − '�
�  −  '!�� + �� ��& f����f��. − ��� + ���/ − ���g + ������Ó − �`�g 
+���/ + �-� + §/� ��/ − ��� 1�� 1� =  −1/ + +��� − �@� + !* + �1 − §2�&��3 − �5� + !�ℎ + ,ℎ&�3 + �1 − §.��1 − '�����
�  −  '!�� + �� ��& ����� − �����Ó − �`� 

3«� 34 = −1� + +/��� − �@� + �*1 + �1 − §2�� ��4 − �5� + !�ℎ + ,ℎ&�4 + �.�����.� �«�b��� �  !"#$�# %7& ��Ó − �`�          (28) 

1�� 1�  =  −1� + �γ. − ¨§����� − �@� + ��� + ,���� + �1 − §.��1 − '�����
�  −  '!�� + �� ��& ��Ó − �`� 

3«à 34  =  ���@ +0��@ − �.� 

3«á34  =  �1 − §.�����Ó − �`� + ��� + ,§.+�§���Ó 

1�`1�  =  −1� + ��� + ,� + ,§.+�§���∗̀ + �1 − §.�����
�  −  '!�� + �� ��& !��. − ��� + ���/ − ���& 

6. Numerical Simulations Results 

In this section, numerical simulations are performed to 

illustrate the effects of malaria control measures by applying 

different control strategies. We apply the parameter values 

listed in Tables 2 and 3 to obtain numerical results for the 

optimal system by using a forward-backward iterative 

method [31]. 

Initial values that we used for simulation of the 

optimal control are: �� (0) = 700, ���0�  = 250, ���0�  = 

30,  ���0� = 80, ��0� = 100 , 
��0�  =30,  ���0� = 5000, 
and ���0� = 100. And also coefficients of the state and 

controls are given below. Due to the lack of the available 

literatures and data, as an example, we have assumed 

cost coefficients for, 1.  = 4, 1/ = 2, 1� = 4, 1�  = 1� =2, ¼. = 2,  ¼/ = 4, ¼� = 36 ¼� = 1, respectively. And u1 = 

0.0904, u2(t) = 0.0802, u3(t) = 0.1650, and u4(t) = 0.0760 

and maximums of §.���,§/���,§���� and §���� are taken 

as 1. 

Table 2. Parameter Values model system (1). 

Parameter Value Source ��  0.0655 [32] Λ�  0.000000104 Assumed ��  0.00005447 [33] ,�  0.05 [34] -�  0.07143 [32] +  0.005 [35] '  0.8900 [17] +.  0.05 Assumed +/  0.005 Assumed 0  0.01095 [32] ¨  0.5000 [32] �  0.2000 [36] ��  0.0900 [37] Λ�  200 Assumed ��  0.0400 [38] ,�  0.0500 [39] �  0.2500 [32] ,  0.2500 [32] �  0.5020 [36] *  0.07 Assumed *.  0.07 Assumed �  0.0420 [32] 
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Table 3. Prevention and control variables in the model. 

Symbol Description Value Source §.���  Preventive measure using insecticide treated bed nets 0.0904 [32] §/���  The effort of screening of quarantine individuals 0.0802 Assumed §����  The control effort on treatment of infectious individuals 0.1650 [32] §����  Preventing measure using indoor residual spray 0.0760 [32] 

 

From case (iii) of theorem 4 above, if 
5 > 1, there are 

only two equilibria and the disease free-equilibrium is 

unstable and the larger endemic equilibrium is stable. The 

qualitative bifurcation diagrams describing the two types of 

bifurcation at  
5 = 1 are shown in figure 2 below. 

 

(a) 

 

(b) 

Figure 2. Qualitative bifurcation diagrams for the forward (a) and backward (b) bifurcations respectively. 

Note that, the solid line or blue color denotes both stable 

disease free equilibrium �5 and endemic equilibrium �∗∗ 

respectively. The dashed line or red color denotes both un stabile 

disease free equilibrium �5 and endemic equilibrium �∗∗ 

respectively. In the backward bifurcation scenario, if 
5 < 1, 

then the disease control more depends on the initial sizes of the 

sub populations of the model. Contrary, reducing 
5 below the 

saddle node bifurcation value that is, 
´ < 
5 < min �1, 
�� or 

max�1, 
$� < 
´ < 
5 < 1, may result in disease elimination. 

6.1. Controlling Endemic Malaria Disease Using Imperfect 

Quarantine Strategy 

In this strategy, we simulated the model system (1) by 

incorporating imperfect quarantine to reduce the number of 

susceptible mosquitos’ bites from or contacts with malaria 

infectious humans. 
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Figure 3. Simulation of endemic malaria model (1) of Susceptible mosquito populations. 

Figure 3 above, represents the numbers of susceptible 

mosquitoes ��  during the implementation of the strategy. 

From the figure, it is clearly seen that the graphs were 

exponentially decreased and smaller in number at the end of 

implementation of intervention time above in the case with 

imperfect quarantine �0 < ' < 1�  compered to in case 

without quarantine ' = 0. From this we conclude that 

imperfect quarantine strategy plays a great role in reducing 

the numbers of susceptible mosquitoes bites from or contacts 

with malaria infectious humans and hence eliminate the 

spread and transmission of the disease through the human 

populations. 

To examine the impact of the combination of each control and 

elimination of malaria disease, we used the following strategy: 

(i) Implementing ITN  §.���  and screening  §/��� as 

intervention 

(ii) Implementing ITN and IRS as intervention  

(iii) Implementing screening and treatment as intervention 

(iv) Implementing ITN, screening and treatment as 

intervention  

(v) Implementing ITN, treatment and IRS as intervention 

(vi) Implementing screening, treatment and IRS as 

intervention  

(vii) Implementing ITN, screening, and IRS as 

intervention 

(viii) Implementing ITN, screening, treatment effort and 

IRS as intervention 

6.2. Controlling with Insecticide Treated Net ITN and 

Screening 

In this case, we simulated the model by incorporating 

optimized Insecticide Treated Net and screening as disease 

control strategy. 
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(b) 

Figure 4. Simulation of endemic malaria model with ITN and Screening. 

In Figue 4 (a) and (b) above, there is a small number 

difference between the states with control  � §.��� ≠0,  §/���  ≠ 0.  §���� =  §���� = 0� represented by blue 

color and without controls � §.��� =  §/���  =   §/��� =§���� = 0� represented by red color. It is clearly seen from 

the figure that, both the number of infected humans and 

hospitalized (infected isolated) humans are exponentially 

decreased with time but their numbers cannot be zero at final 

time of implementation of the strategy. From this we can 

conclude that using only the combination of insecticide 

treated net ITN and screening, it is possible to reduce the 

number of malaria infectious individuals even without 

treating asymptomatic individuals. 

6.3. Controlling with Insecticide Treated Net ITN and 

Indoor Residual Spray IRS 

This case, we simulated the model by incorporating optimized 

insecticide treated net and Indoor Residual spray IRS as disease 

control strategy to optimize the objective function J 
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(b) 

Figure 5. Simulation of endemic malaria model with ITN and IRS. 

Figure 5 (a) and (b), above represents the numbers of infected 

non-quarantined humans ��  and infected mosquitoes ��  during 

the implementation of the strategy. From the figure, it is clearly 

seen that the numbers of infected non-quarantined humans and 

infected mosquitoes are smaller in case with control � §.��� ≠0,  §����  ≠ 0 , §/��� = §���� = 0� than in the case without 

control � §.��� =  §/���  =   §/��� = §���� = 0�  at the final 

time of implementation of the strategy. 

6.4. Control with Screening and Treatment 

In this case, we simulated the model by incorporating 

optimized screening and treatment as disease control strategy 

to optimize the objective function J. 
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Figure 6. Simulation of endemic malaria model with screening and treatment. 

Figure 6 (a) and (b), above represents the numbers of 

hospitalized (infected isolated)   ��  humans and recovered 
� 

humans during the implementation of the strategy with control 

and without control represented by blue and red color 

respectively. From the figure, it is clearly seen that the numbers 

of hospitalized (infected isolated) humans are decreased more 

with time incase with control than without control. Similarly, the 

number of recovered humans are large incase with control while 

their numbers are small incase without control at the final time 

of implementation of the strategy. 

6.5. Control with Preventive Insecticide Treated Net ITN, 

Screening and Treatment 

In this case, we simulated the model by incorporating 

optimized insecticide treated net ITN, screening and treatment as 

disease control strategy to optimize the objective function J. 

Figure 7 (a), (b) and (c), represents the numbers of infected 

non-quarantined �� , hospitalized (infected isolated)   ��  and 

infected mosquitoes ��  during the implementation of the strategy 

with control and without control represented by blue and red 

color respectively. From the figure, it is clearly seen that the 

numbers of infected non-quarantined humans and hospitalized 

(infected isolated) are smaller at the end of implementation of 

intervention time above in the case with control than without 

control. Similarly, the number of infected mosquitoes are large 

incase without control while their numbers are small incase with 

control at final time of implementation of the strategy. The 

reason is that applying optimized the combination of insecticide 

treated net ITN, screening and treatment only control 

intervention decreases more the burden of the disease than a 

combination of two controls intervention but it cannot be 

eradicate the disease in the community. 
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(b) 

 
(c) 

Figure 7. Simulation of endemic malaria model with screening, treatment and ITN. 
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(b) 

 
(c) 

Figure 8. Simulation of endemic malaria model with Screening, Treatment and IRS. 

6.6. Control with Combination of Screening, Treatment and 

Indoor Residual Spray IRS 

In this case, we simulated the model by incorporating 

optimized indoor residual spray IRS, screening and 

treatment as disease control strategy to optimize the 

objective function J. 

Figure 8 (a), (b) and (c), represents the numbers of 

infected non-quarantined �� , hospitalized (infected 

isolated)   �� and infected mosquitoes �� . From the figure, 

it is clearly seen that the numbers of infected non-

quarantined humans and hospitalized (infected isolated) 

are decreased more with time incase with control than 

without control but their number cannot be zero at the 

final time of the implementation of the strategy. Similarly, 

the number of infected mosquitoes are large incase 

without control while their numbers are small incase with 

control at final time of implementation of the strategy. 

The reason is that applying optimized the combination of 

indoor residual spray IRS, screening and treatment only 

control intervention decreases more the burden of the 

disease than a combination of two controls intervention 

but it cannot be eradicate the disease in the community. 

6.7. Control with Insecticide Treated Net ITN, Treatment 

and Indoor Residual Spray IRS 

In this strategy, we applied a combination of treatment, 

Insecticide Treated Net ITN and Indoor Residual Spray 

IRS to the endemic malaria disease model system (1) as 

control strategy. In Figure 9 (a), (b) and (c) a small 

number difference is seen between states with 

control  � §.��� ≠ 0,  §����  ≠ 0.  §���� ≠ 0,  §/��� = 0� and 

without controls � §.��� =  §/���  =   §���� = §���� = 0� . 

It is clearly seen from the figure that, the number of 

infected non-quarantined humans, hospitalized (infected 

isolated) humans and infected mosquitoes are decreased 

more with time incase with control than without control 
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but their number cannot be zero at the final time of the 

implementation of the strategy. The reason is that applying 

optimized the combination of ITN, treatment, and IRS 

only control intervention, decreases more the burden of 

the disease than a combination of the two controls 

intervention but it cannot be eradicate the disease in the 

community. 

6.8. Control with Insecticide Treated Net ITN, Screening 

and Indoor Residual Spray IRS 

In this strategy, we applied a combination of screening, 

insecticide treated net ITN and indoor residual spray IRS to 

the endemic malaria disease model system (1) as control 

strategy. 

In Figure 10 (a), (b) a small number difference is seen 

between states with control � §.��� ≠ 0,  §/���  ≠ 0.  §���� ≠0,  §���� = 0� represented by blue color and without controls � §.��� =  §/���  =   §���� = §���� = 0� represented by red 

color. It is clearly seen from the figure that, the number of 

infected non-quarantined humans and infected mosquitoes 

are decreased more with time incase with control than 

without control but their number cannot be zero at the final 

time of the implementation of the strategy. The reason is 

that applying optimized the combination of ITN, screening, 

and IRS only control intervention, decreases more the burden 

of the disease than a combination of the two controls 

intervention but it cannot be eradicate the disease in the 

community. 

 

(a) 

 

(b) 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

time(Days)

N
o
n

-q
u

a
ra

n
ti
n

e
d
 I
n
fe

c
te

d
 h

u
m

a
n

 p
o
p

u
la

ti
o

n
s

 

 

I
h
 with    u

1
 = u

2
 = u

3
 = u

4
 = 0

I
h

*
 with    u

1
 , u

3
  and  u

4
 are not equal to zero but  u

2
  = 0

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

time (Days)

 
H

o
s
p

it
a

li
z
e

d
 (

Is
o

la
te

d
) 

In
fe

c
te

d
 h

u
m

a
n

 p
o

p
u

la
ti
o

n
s

 

 

H with   u
1
 = u

2
 = u

3
 = u

4
 = 0

H
*
 with  u

1
, u

3
  and   u

4
 are not  equal to zero but   u

2
= 0



52 Dereje Gutema Edossa et al.:  Modelling the Dynamics of Endemic Malaria Disease with   

Imperfect Quarantine and Optimal Control 

 

(c) 

Figure 9. Simulation of endemic malaria model with Insecticide Treated Net, treatment and IRS. 

 

(a) 

 

(b) 

Figure 10. Simulation of endemic malaria model with Screening, ITN and IRS. 
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(a) 

 

(b) 

 

(c) 

Figure 11. Simulation of endemic malaria model with screening, treatment, ITN and IRS. 
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6.9. Control with Screening, Treatment with Drugs, 

Insecticide Treated Net and Indoor Residual Spray 

In this strategy, we applied a combination of screening, 

treatment, Insecticide Treated Net ITN and Indoor Residual 

Spray IRS to the endemic malaria disease model system (1) 

as control strategy. 

In Figure 11 (a), (b) and (c) above, a small number 

difference is seen between states with control  � §.��� ≠0,  §/���  ≠ 0.  §���� ≠ 0,  §���� ≠ 0� and without controls � §.��� =  §/���  =   §���� = §���� = 0�.  It is clearly seen 

from the figure that, the number of infected non-quarantined 

humans, hospitalized (infected isolated) humans and infected 

mosquitoes are exponentially more decreased with time 

incase with control than without control but their number 

cannot be zero at the final time of the implementation of the 

strategy. The reason is that applying optimized the 

combination of ITN, screening, treatment and IRS only 

control intervention, decreases furthermore the burden of the 

disease than a combination of the three controls intervention 

but it cannot be eradicate the disease in the community. 

7. Discussion and Conclusion 

In this paper, we formulated and analyzed a deterministic 

model that incorporates both imperfect quarantine and 

optimal control strategy to investigate their roles in case of 

endemic malaria disease control and elimination. We 

analyzed the dynamical behavior of the model in term of the 

basic reproduction number 
5 and also obtained a sufficient 

condition for both local and global asymptotic stability of the 

disease-free equilibrium �5 and local asymptotic stability of 

endemic equilibrium �∗∗. The model system (1) exhibit both 

backward and forward bifurcations at 
5 = 1. 

The impact of imperfect quarantine strategy on endemic 

malaria persistence clearly seen on Figure 3 (figure showing 

Susceptible mosquitoes with and with no control parameter ' ). From this we conclude that in order to minimize the 

burden of malaria disease from the community, reducing the 

biting rate of the quarantined people is advice able than to 

quarantine more infected people at earlier infection stage. 

The optimal control includes the use of insecticide 

treated nets, screening of infectious humans, treatment of 

infective humans and indoor residual spray to reduce the 

number of malaria transmitter vectors by means of spraying 

on the place where they choose for rest and breed. We 

perform and analyzed the necessary conditions for the 

optimal control of the disease model system (1). From this 

we conclude that, 

(i) a combination of insecticide treated net and indoor 

residual spray is the best alternative combination of 

controls to reduce the numbers of infected non-

quarantined humans and mosquitoes, when 

combinations of bi-controls are considered. 

(ii) Both combinations of insecticide treated net-indoor 

residual spray- screening and insecticide treated net-

indoor residual spray treatment are the best alternative 

combinations of controls to reduce the numbers of 

infected non-quarantined humans, isolated humans and 

mosquitoes, when combinations of tri-controls are 

considered. 

(iii)Furthermore, the best combination is the one that 

incorporated all four control strategies. 
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