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Abstract: The coronavirus outbreak continues to pose a significant challenge to human lives globally. Many efforts have
been made to develop vaccines to control the spread of this virus. However, with the arrival of the COVID-19 vaccine, there is
hesitancy and a mixed reaction toward getting the vaccine. Public education on COVID-19 immunization is essential to vaccinate
a large proportion of the population. In this study, we demonstrate the usefulness of public education on the COVID-19 vaccine
and its effects in containing the spread of the disease. In particular, we use a compartmental model with vaccine education to
study the dynamics of the COVID-19 infection. We classify the total population into two subgroups: Those willing to accept
the vaccine and those unwilling to receive the vaccine. We incorporate vaccine education for the general public hesitant to get
the vaccine. We then analyze and investigate the impacts of education on individuals reluctant to get vaccinated. The findings
indicate that vaccine education can substantially minimize the daily cumulative cases and deaths of COVID-19. The results also
show that vaccine education significantly increases the number of willing susceptible individuals, and with a high vaccination
rate and vaccine effectiveness, the outbreak can be controlled. Based on the findings, we recommend that eligible individuals
acquire the vaccine to help curb the COVID-19 outbreak by slowing the spread of the virus.
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1. Introduction

The severe acute respiratory syndrome coronavirus (SARS–
CoV–2) strain that caused 2019 novel coronavirus disease
(COVID-19) pandemic was first observed in Wuhan, China,
in December 2019 and was later declared a pandemic by the
World Health Organization (WHO) on March 11, 2020 [1].
The first case of coronavirus in the United States of America
was revealed on January 20, 2020, in Washington State.
Since then, the number of positive cases has reached more
than 30 million across the country in just over one year.
COVID-19 is spread from person to person mainly through

respiratory droplets released when an infected person sneezes,
coughs or speaks [1, 2]. Several non-pharmaceutical measures,
including face mask use, social distance, quarantining, etc.,
are recommended to reduce the virus’s spread. However, there
is still a need for public health and clinical interventions to
successfully contain the disease.

Health experts agree that the best way to end the pandemic
is to vaccinate most of the population [3, 4]. Currently, three
COVID-19 vaccines are already known, recommended, and
being used in the USA. The first is the Pfizer-BioNTech;
one must complete two doses, about three weeks apart,
recommended for individuals aged 16 years and older.
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The second vaccine available is called Moderna COVID-19
vaccine. It is also to be taken in two doses, one month or 28
days apart, introduced by a shot in the muscle of the upper arm.
It is recommended for people aged 18 years and older. The
third vaccine is called Johnson and Jonson’s Janssen COVID-
19 vaccine, got emergency use authorized on February 27,
2021. These vaccines are intended for the prevention of
coronavirus disease. They may help to mitigate the spread
of the coronavirus once most individuals make an effort to
be vaccinated. However, a large proportion of the American
population is reluctant about the COVID-19 vaccines. Lack
of information about the side effects, especially the long-
term effects, time-line of the COVID-19 vaccines production,
political [5] and conspiracy theory, are among the reasons for
vaccine hesitancy.

The population opinion and the trust in the vaccine are of
the most significant importance for appropriate coverage. A
report in the American Medical Association Journal shows
that skepticism toward the COVID-19 Vaccines is on the rise
among Americans. A survey by the Kaiser Family Foundation
shows that about 29% of health workers were hesitant to
accept the vaccine [6]. In the previous study [7], a sample
of 1878 adult Americans was asked different questions related
to vaccination. The sample is composed of (52%) Females,
(74%) Whites, (81%) non-Hispanic, (56%) married, (68%)
employed full time, (77%) with a bachelors degree and higher.
The probability of receiving the vaccine in the research was
as follows: (52%) for very likely, (27%) for somewhat likely,
(15%) not likely, (7%) definitely not. Vaccine hesitancy was
also higher in African Americans, Hispanics, and pregnant
women, and breastfeeding moms.

Mathematical models are powerful tools for investigating
human infectious diseases, such as COVID-19, contributing
to the understanding of infections’ dynamics, and can provide

valuable information for public-health policymakers [8, 9].
Numerous mathematical models have been used to provide
insights into public health measures for mitigating the spread
of the coronavirus pandemic [10, 11, 12, 13]. For example,
Eikenberry et al. in [14] developed a mathematical model
to assess the impact of mask use by the general public
on the transmission dynamics of the COVID-19 pandemic.
Their results showed that broad adoption of even relatively
ineffective face masks might reduce community transmission
of COVID-19 and decrease peak hospitalizations and deaths.

Given the pervasiveness of vaccine hesitancy, we develop
a compartmental model to study the impacts of education
for individuals unwilling to accept the COVID-19 vaccines.
We explore policy-related questions, including investigating
the vaccination rate and vaccine education impact on disease
dynamics in the USA.

2. Model Formulation

We consider a compartmental model for the infection’s
transmission dynamics and control. With the arrival of
various COVID–19 vaccines, there is a mixed reaction to
get vaccinated or not. We classify the US’s total population
into two subgroups: Those willing to get the vaccine and
those unwilling to receive the vaccine. We further sub-divide
the populations into eleven mutually exclusive compartments
of willing susceptible (Sw), unwilling susceptible (Su),
willing exposed (Ew), unwilling exposed (Eu), willing
symptomatic infective (ISw), unwilling symptomatic infective
(ISu), willing asymptomatic infective (IAw), unwilling
asymptomatic infective (IAu), willing recovered (Rw),
unwilling recovered (Ru), and vaccinated population (V ) so
that the total population at time t, denoted byN(t) is

N(t) = Sw(t) + Su(t) + Ew(t) + Eu(t) + ISw(t) + ISu(t) + IAw(t) + IAu(t) +Rw(t) +Ru(t) + V (t).

Public education on COVID-19 immunization is essential
to vaccinate a large proportion of the population. Social
networking sites such as Facebook, Twitter, and LinkedIn can
be handy in connecting and educating people about COVID-
19 vaccination. TV and radio channels are powerful tools
in moving and transferring information and educating the
general public to get the vaccine. Health care providers
are respected and trusted by patients, and therefore they
can play an important role in vaccine acceptance. Also,
parents can be helped by pediatric healthcare professionals
about the importance, effectiveness, and safety of COVID-
19 vaccines for the protection of children health. In colleges
and universities, administrators and faculty members may
play a key role as vaccine champions and may positively
impact convincing and spreading the information to students
to get vaccinated. Moving forward, we will call these
forms of education as universal education. We incorporate
universal education for the unwilling populations at a rate σ.

The willing populations receive the vaccine at rate r with
vaccine efficacy θ, and progress to the vaccinated class. We
further assume that the willing population may waver in their
willingness at a rate τ. There is evidence that individuals
exposed or infected should wait for 90 days before receiving
the COVID-19 vaccine. The CDC [2] recommends that that
anyone with the symptoms of the virus COVID-19 should
wait to get the immunization against COVID-19 until they
have completely recovered from their illness, and individuals
without symptoms also need to wait until they meet the
conditions for meeting others and isolation before getting
vaccinated. We exclude exposed and infected individuals
from the vaccination until they are recovered. Figure 1, fully
illustrates the flow of populations in the various compartments;
the model’s parameters are defined in Table 2.

The dynamics in Figure 1 can be represented as a system of
nonlinear ordinary differential equations given by
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Figure 1. Schematic diagram of the COVID–19 model.

dSw
dt

= −(1− θr)(λw + λu)Sw − (θr + τ)Sw + σSu

dSu
dt

= −(λw + λu)Su − σSu + τSw

dEw
dt

= (1− θr)(λw + λu)Sw − (k + τ + θr)Ew + σEu

dEu
dt

= (λw + λu)Su − (k + σ)Eu + τEw

dISw
dt

= αkEw − (τ + γ + δ)ISw + σISu

dISu
dt

= αkEu − (γ + σ + δ)ISu + τISw

dIAw
dt

= (1− α)kEw − (τ + γ + δ)IAw + σIAu

dIAu
dt

= (1− α)kEu − (σ + γ + δ)IAu + τIAw

dRw
dt

= γ(ISw + IAw)− (τ + θr)Rw + σRu

dRu
dt

= γ(ISu + IAu)− σRu + τRw

dV

dt
= θr(Sw + Ew +Rw)

(1)

where the forces of infection are given by

λw = β

(
ISw + IAw

N

)
, λu = β

(
ISu + IAu

N

)
. (2)
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Table 1. Description of state variables of the COVID-19 model.

State variable Description

Sw(Su) The population of willing (unwilling) susceptible individuals

Ew(Eu) The population of willing (unwilling) exposed individuals

ISw(ISu) The population of willing (unwilling) symptomatic infective individuals

IAw(IAu) The population of willing (unwilling) asymptomatic infective individuals

Rw(Ru) The population of willing (unwilling) recovered individuals

V The population of vaccinated individuals

Table 2. Description of the parameters of the COVID-19 model (1).

Parameter Description

β Effective contact rate

r Vaccination rate for the Sw (Ew ,Rw) individuals

θ Efficacy of the vaccine

σ Education rate for unwilling individuals

τ Loss of willingness to get the vaccine

k Rate of progression from exposed to infective class

α Proportion of infective individuals that show symptoms

γ The recovery rate of infected individuals

δ Disease-induced mortality rate for infected individuals

3. Results

3.1. Disease-free Equilibrium and Reproduction Number

The model (1) has a disease-free equilibrium (DFE) given by

D0 : (S∗w, S
∗
u, E

∗
w, E

∗
u, I

∗
Sw, I

∗
Su, I

∗
Aw, I

∗
Au, R

∗
w, R

∗
u, V

∗)

= (S∗w, S
∗
u, 0, 0, 0, 0, 0, 0, R

∗
w, R

∗
u, N

∗ − S∗w − S∗u −R∗w −R∗u),
(3)

where N∗ is the initial total population size, S∗w, S
∗
u, V

∗, R∗w, R
∗
u > 0, and 0 < S∗w + S∗u + V ∗ + R∗w + R∗u ≤ N∗. The next

generation operator method [15, 16, 17] can be used to analyze the asymptotic stability property of the disease-free equilibrium,
D0. In particular, using the notation in [15, 16, 17], it follows that the associated next generation matrices, F and T , for the new
infection terms and the transition terms, are given, respectively, by

F =


0 0 (1− θr)β S

∗
w

N∗ (1− θr)β S
∗
w

N∗ (1− θr)β S
∗
w

N∗ (1− θr)β S
∗
w

N∗

0 0 β
S∗
u

N∗ β
S∗
u

N∗ β
S∗
u

N∗ β
S∗
u

N∗

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and,

T =


k + τ + θr −σ 0 0 0 0
−τ k + σ 0 0 0 0
−αk 0 τ + γ + δ −σ 0 0
0 −αk −τ γ + σ + δ 0 0

−(1− α)k 0 0 0 τ + γ + δ −σ
0 −(1− α)k 0 0 −τ γ + δ + σ

 .

The control reproduction number is given by

Rc = ρ(FT−1) =
kβ [S∗u (k + σ + τ + θr) + S∗w (k + σ + τ) (1− θr)]

N∗ (γ + δ) [(k + θr) (k + σ) + kτ ]
. (4)
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The reproduction number is the average number of new
COVID-19 cases generated by a typical infectious individual
introduced into a population where a certain fraction is
protected; it is a measure of contagiousness of infectious
diseases.

Theorem 3.1. The disease-free equilibrium (DFE) of the
model (1) is locally-asymptotically stable ifRc < 1.

Table 3. Estimated parameter values for the model (1) using data for the USA.

Parameters Value Source
β 0.0826 Estimated
r 0.0049 Estimated (see also [27])
α 0.7000 CDC
σ 0.4009 Estimated
τ 0.0203 Estimated
k 1/2.5 per day [25, 26]
γ 0.1000 [20]
δ 0.0017 Estimated
θ 0.8000 Assumed

3.2. Parameter Estimation

The proposed model is fitted and validated using the USA
COVID–19 daily cumulative cases and deaths from December
14, 2020, to July 31, 2021 [23, 24]. The choice of this data
is motivated by the commencement of national vaccination on
December 14, 2020, in the USA. There are nine parameters
underlying the model; however, four of the parameters, i.e.,
γ, k, α, and θ, were fixed, and the rest were estimated. It is
worth noting that the model parameters may not be uniquely
identifiable based only on cumulative cases and deaths of USA
COVID–19 data available. We addressed this identifiability
problem by using an inverse modelling, sensitivity and Monte
Carlo analysis method built in FME [18] package in R (see
also [19]). This method analyzes mathematical models with
data, performs local and global sensitivity, and Monte Carlo
analysis. It addresses parameter identifiability issues and fits a
model to data using existing optimization methods such as the
constrained quasi-Newton method.

The parameter estimation using the FME works by finding
the best fit parameters that minimize the sum of squared
residuals. For any observed data point, j, of observed variable
x, the weighted and scaled residuals are estimated as

resxj =
Modxj

− Obsxj

errorxj
nx

,

where Modxj
and Obsxj

are the modeled and observed value
respectively. errorxj

is a weighting factor that can be chosen
as the mean of all measurements, overall standard deviation
or measurement error for each data point which are usually
assumed to be normally distributed and independent . The
scaled factor nx is the number of data points for each variable
x. The sum of these residuals per each variable (the “variable”
cost) and the total sum of squares (the “model” cost) are
estimated and then used to find the best fitting parameters.

The estimated parameter values obtained from the best
model prediction are given in Table 3.

3.3. Sensitivity Analysis

This section uses the Latin Hypercube Sampling and Partial
Rank Correlation Coefficients (PRCC) to perform sensitivity
analysis [21, 22] on the model parameters. The analysis is
needed to identify model parameters that significantly impact
model outcomes using the reproduction number (Rc) as the
response function [12, 21, 22]; that is, to determine the model
robustness to parameter values. Parameters with large PRCC
greater than +0.50 are strongly positively correlated with the
response function. In contrast, those less than −0.50 are
said to be largely negatively associated with the response
function [21, 22]. Figure 2 displays the PRCC analysis plot
of the model parameters considered. The results show that
the effective contact rate (β) and the loss of willingness to
get the vaccine parameter (τ ) positively affect Rc, meaning
that an increase in these parameters will increase Rc. On the
other hand, the education rates for unwilling individuals (σ),
the vaccination rate r, and vaccine efficacy (θ) have a negative
effect on theRc, and increasing these parameters would lower
the Rc. The results further indicate that the parameters; the
effective contact rate, education rate for unwilling individuals,
the vaccination rate, and the vaccine efficacy mainly influence
the response function (Rc).

Figure 2. Partial rank correlation coefficients (PRCCs) showing the impact of model
parameters on the reproduction number (Rc) of the model. Parameter values used are
as given in Table 3.

3.4. Contour Plots Results

We generated contour plots to analyze the reproduction
number (Rc) of the model as a function of desired parameters
as displayed in Figure 3. Parameter values used for the
simulation are as given in Table 3.

Based on the contour plot results in Figure 3, the following
observation inferences are made:

(i) To effectively curb the outbreak, that is, reducing (Rc)
to a value less than unity, the Figure 3 (a) suggests that a
high education rate (σ) is needed. The lower the fraction
of individuals hesitant to accept the vaccine, the lower
the education rate required and vice versa. For example,
to decrease the reproduction number below one, at least
an education rate of 0.3 is needed if about 40% of the
susceptible population is unwilling to vaccinate.

(ii) The Rc decreases as more individuals are being
educated and are willing to receive the vaccine, and the
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vaccination rate is high, Figure 3 (b).
(iii) Figure 3 (c) illustrates the impact of a relatively high

vaccination rate and efficacy. One can observe that a

high combined effects cause the Rc to drop to below
one.

(a) (b) (c)

Figure 3. Contour plot of the reproduction number (Rc) of the model (1), as a function of: (a) Education rate (σ) and the ratio
(

Su
Sw+Su

)
, (b) Vaccination rate (r) and the ratio(

Sw
Sw+Su

)
, and (c) Vaccination efficacy (θ) and vaccination rate (r).

Table 4. A summary of various increase in baseline education rate.

2020/12/14–2021/07/31Education rate (σ)
Cumulative Cases Cumulative Deaths

Baseline 34172020 621425
25% increase 30058235 554198
25% decrease 44925488 796696
50% increase 27989917 520366
50% decrease 90712418 1537269

Table 5. A summary of various increase in vaccination rate.

14/12/2020–20/1/2021Vaccination rate (r)
Cumulative Cases Cumulative Deaths

Baseline 34172020 621425
25% increase 31954718 585259
25% decrease 37433903 674363
50% increase 30341561 558889
50% decrease 42698832 758884

3.5. Time Evolution Analysis, and Predictions

In this section, we analyze the effects of vaccine education
σ, the vaccination rate r, and the efficacy of the vaccine θ, on
the cumulative US COVID-19 cases and deaths.

First, we begin with the effects of the education for
unwilling individuals and its impact on the cumulative cases
and deaths. Table 4 provides numerical description while
Figure 4 graphically explains the decrease and increase in
cumulative cases and deaths when the education rate is
increased or decreased, respectively. For example, from Table
4, a 25% increase in education rate reduces the cumulative
cases from 34172020 to 30058235 and from 621425 to 554198
for the cumulative deaths.

We observe that an increase in vaccine education decreases
the COVID-19 cumulative cases and deaths. On the other
hand, a lower vaccine education increases the baseline
cumulative cases and deaths. This suggests that an increase
of education parameter from the baseline, lowers the spread

of COVID-19. It is worth noting that a decrease of 50% in
education rate saw a significant jump of both the cumulative
cases and cumulative deaths.

Second, we analyze the effects of increasing or decreasing
the vaccination rate r, on cumulative cases and deaths
numerically. The results are displayed in Table 5 and Figure
5.

Note that 50% increase or decrease in the vaccination
rate decreases or increases the cumulative cases and deaths
significantly compared to the baseline scenario. For instance,
a 50% increase in the baseline rate of vaccination reduces the
cumulative cases and deaths from 34172020 and 621425 to
30341561 and 558889, respectively. On the other hand, the
same reduction rate from the baseline increases the cumulative
cases and deaths to 42698832 and 758884, respectively. Note
also that the 50% increase of the vaccination rate shifts
significantly below the baseline curve, while a 50% reduction
of the rate of vaccination saw a huge jump of the curve above
the baseline curve. This suggests that as the vaccination rate
increases, the cumulative cases and deaths of COVID–19 in
the USA decreases.

Table 6. A summary of various decrease and an increase in the efficacy of COVID–19
vaccine.

14/12/2020–20/1/2021Efficacy of the vaccine (θ)
Cumulative Cases Cumulative Deaths

Baseline 34172020 621425.
10% increase 33191443 605445
20% increase 32339981 591551
25% decrease 37433903 674363
40% decrease 40251443 719751

Lastly, we consider the effects of the efficacy of the vaccine
and report the numerical and graphical results of varying the
parameter θ. The quantitative results and graphical description
of various decreases and an increases in the efficacy of the
vaccine are displayed in Table 6 and Figure 6.
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Figure 4. Effects of increasing and decreasing the baseline education rate parameter σ.
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Figure 5. Effects of increasing and decreasing the baseline vaccination rate, r.
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Figure 6. Effects of increasing and decreasing the baseline efficacy of the COVID–19 vaccine θ.

We observe that a lower vaccine efficacy has the highest
cumulative cases and deaths of COVID-19. Note that a 40%
reduction of vaccine efficacy from the baseline, i.e., a 48%
vaccine efficacy increases the cumulative cases and deaths

from the baseline 34172020 to 40251443 and 621425 to
719751, respectively. These results reinforce the expectation
that higher vaccine efficacy contributes significantly to the
reduction of of spread of COVID–19.
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4. Discussion and Conclusions
The coronavirus outbreak poses a severe threat to human

lives globally. Since the beginning of the pandemic, a
campaign to use non-pharmaceutical measures to prevent the
virus’s spread has been underway, including a face mask,
social distancing, and frequent hand washing. The emergence
of vaccines sounds promising; however, there is a challenge of
vaccine hesitancy. It is therefore essential to understand how
educating the general public will impact the fight against the
outbreak. In this paper, we use a compartmental model with
vaccine education to study the dynamics of the COVID-19
infection. We classify the total population into two subgroups:
Those willing to accept the vaccine and those unwilling to
receive the vaccine. The vaccine education is incorporated for
the general public, hesitant to take the vaccine. We assessed
the impact of the education campaign on the control of the
outbreak.

First, we computed an expression for the reproduction
number (Rc), a threshold that measures the contagiousness of
infectious diseases. We performed a sensitivity analysis of the
reproduction number. The result shows that vaccine education
negatively influences the reproduction number; that is, an
increase in the vaccine education implies a decrease in theRc.
Epidemiologically, when Rc ≤ 1, then the transmission will
fade or die out. In contrast, the infected number of people is
expected to increase ifRc > 1. The sensitivity analysis results
also show that vaccine efficacy and vaccination rate negatively
impact theRc, and raising them will reduce theRc.

Using contour plots, we further analyzed the reproduction
number as a function of two independent variables, the
vaccine education and the proportion of unwilling susceptible
individuals ( S∗

u

S∗
u+S

∗
w

). The prospect of curtailing the outbreak
is achievable with a high education rate. For instance, the
result in Figure 3 (a) shows that if a high proportion of the
susceptible populations is unwilling to accept the vaccine, high
public education can help diminish the reproduction number
and mitigate the virus. Also, vaccine education raises the
willing susceptible individuals, and with a high vaccination
rate and vaccine efficacy, it will be possible to control the
spread of the outbreak.

Next, we analyzed the effects of vaccine education,
vaccination rate, and the efficacy of the vaccine on the daily
cumulative cases and deaths from December 14, 2020 to July
31, 2021. The results suggest that higher rates of vaccine
education, vaccination, and vaccine efficacy contribute to the
mitigation of the spread of the COVID-19 disease outbreak.
For example, the result in Figure 4 shows that a lower vaccine
education contributes to the higher projected cumulative cases
and deaths. On the other hand, higher education rates help to
control the outbreak. The effect of these higher rates becomes
evident over time; thus, these mitigation strategies need to be
enforced consistently over time. These results suggest that a
combined effect of higher vaccine education, vaccination, and
vaccine efficacy rates would contribute to slow the pace of the
spread of the COVID-19 outbreak and thus help to control the
disease.
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