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Abstract: Orthogonal Array-based Latin Hypercube Designs (OALHDs) have not only become popular in practice among 

strategies used in the development of computer experiments but also useful whenever interest is focused on performing some 

physical experiments. Design construction for computer experiments is a new issue in this part of the world since it is more 

about experimental planning rather than modelling aspect in which some progress has been made. The Bush Construction Type 

II method was presented in this paper to construct a strong Orthogonal Array (OA) of strength three, using Galois Fields (GF) 

of order s which gave rise to the constructed Orthogonal Array-Based Latin Hypercube Designs (OALHD) for computer 

experiments. Orthogonal Array-based Latin Hypercube Design was used in this paper as a Latin hypercube design constructed 

based on orthogonal array in order to achieve better space-filling properties that would otherwise not be possessed by a random 

Latin hypercube design (LHD). Orthogonal Array (N, k) LHD were constructed at parameter values of OA (N, k)=(64, 6) and 

(125, 7). This study is an improvement on the early paper which adopted the Bush Construction Type I technique and it 

therefore aimed at proposing a novel approach that employed the maximin criterion in the k-Nearest Neighbour with Euclidean 

distance for constructing strong orthogonal arrays along with the Orthogonal Array-Based Latin Hypercube Designs 

(OALHDs). The OA (64, 6) LHD and OA (125, 7) LHD constructed have better space-filling properties and they achieve 

uniformity in each dimension. This study concludes that the constructed OALHDs can be used whenever interest is focused on 

performing either a conventional or computer experiment on real life situations. A program implementation for the construction 

of OALHDs was done using MATLAB 2016 computer package. 

Keywords: Computer Experiments, Bush Construction Type II Method, Galois Fields, Latin Hypercube Designs,  

Orthogonal Array 

 

1. Introduction 

Experimentation through computer modelling has been 

widely accepted in many areas of engineering, modern 

industry, science and technology due to a rapid increase in 

power of computers. Mathematical models are used as 

computer models to describe some physical phenomena that 

are either complex or difficult to investigate using 

conventional statistical experiments. Computer models simply 

refer to simulators that are used to mimic the real-life 

experiment. A computer experiment is conducted using data 

obtained from a computer model in place of the physical 

process. Computer experiment may be performed to serve as a 

prototype before a physical experiment is conducted. Osuolale 

et al. [12] quoted Strogatz [24] to have reported that the first 

computer experiment was conducted by Enrico Fermi and 

colleagues at the Los Alamos Scientific Laboratory in 1953. 

Since the emergence of the first computer experiment, 

scientists in diverse fields have embraced computer 

experiments as an efficient tool to understand their respective 

processes. The values of the input variables in the computer 

code or model can be varied in order to determine the effect of 

various inputs on the output (s). The conventional 

experimental designs are well embraced when conducting 

physical experiments while space-filling designs are used in 

developing computer experiments. Space-filling designs are 

designs that spread design points evenly throughout the 

experimental region. Space-filling designs prevent replicate 

points by spreading the design points out to the maximum 

distance possible between any two points and distribute the 
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points uniformly. The classical and space-filling designs are 

presented in Figure 1. 

 

Figure 1. Classical and Space-Filling Designs [1]. 

It could be observed in Figure 1 that classical designs 

spread the sample points around the boundaries and leave a 

few at the centre of the design space but space-filling design 

fills the design space. A good experimental design tends to 

fill the design space. 

In an early paper, Osuolale et al. [14] constructed 

Orthogonal arrays (OAs) using Bush Construction Type I and 

the orthogonal arrays (OAs) constructed were subsequently 

used to construct the desired OALHDs. The OALHDs 

constructed were from OA of strength two. The OAs with 

strength 3 or more tend to have very large run sizes. The 

Bush Construction Type II method using a mathematical 

theorem discussed in Hedayat et al. [4] was therefore adopted 

in this paper to construct strong Orthogonal Arrays (OAs) of 

strength three, using Galois Fields (GF) of order s which 

gave rise to the constructed Orthogonal Array-Based Latin 

Hypercube Designs (OALHDs) for computer experiments. 

This approach is somewhat different from the existing 

techniques as it constucts OAs of both prime and even 

numbers in terms of the levels of the orthogonal arrays used 

to construct OALHDs. 

2. Orthogonal Arrays 

The subject of Orthogonal Arrays (OAs) was first 

introduced by Rao [21] and later by Bose and Bush [2]. 

Orthogonal arrays (OAs) are used in the design of 

experiments, especially in fractional factorial experiment for 

their attractive statistical properties. Orthogonal arrays are 

not only useful in statistics but also useful in computer 

science and cryptography, medicine, agriculture and 

manufacturing. Owen [16] recommended the use of 

orthogonal arrays as suitable designs for computer 

experiments, numerical integration and visualization since 

OA ensures orthogonality which guarantees that the input 

variables are uncorrelated. The applications of orthogonal 

arrays to statistical design of experiments discussed in 

Hedayat et al. [4] are well known. Orthogonal arrays are 

greatly important in all areas of human investigation. 

An orthogonal array of N runs, k factors, s levels, strength 

t ≥ 2 and index λ is an n-by- k matrix with entries from a set 

of s levels, usually taken as 0... s -1 such that for every n-by-

k matrix of s symbols, every subset of t columns from among 

the k columns, when considered alone must contain each of 

the possible s
t
 ordered rows the same number of times. The 

variables n, k, s, t and λ are the parameters of the OA and 

such an array is denoted by OA (n, k, s, t). The parameter λ 

(n/s
t
) is referred to as the index parameter of the orthogonal 

array and is determined by the other four parameters. The 

most familiar examples of orthogonal arrays are regular 

fractional factorial designs discussed in Wu and Hamada [26]. 

The OA with s� � s� � � s� � s is symmetric while the OA 

s� � s� � � � s� is said to be asymmetric. The rows of the 

array represent the experiments to be performed and the 

columns of the orthogonal array correspond to the different 

variables whose effects are being analyzed. The construction 

of OALHDs in this study is largely dependent on the 

existence of orthogonal arrays. Another problem to consider 

with OAs is to determine either the minimum number of 

rows N in any OA (n, k, s, t) for given values of k, s and t or 

the maximum number of columns k for given values n, s and 

t. The celebrated inequalities found by Rao [22] for the 

construction of OAs had proferred a solution to this problem 

and one of the inequalities was adopted in this study. 

Theorem 1: Rao’s Inequalities 

The Rao’s inequalities are given by 

i. � 	 ∑ ��

 ��
�� �� � 1�
, if t=2u and 

ii. � 	 ∑ ��

 ��
�� �� � 1�
 � ����

� ��� � 1����, if t=2u+1 for 

u ≥ 0 

Theorem I provides a scheme for determining either a 

lower bound on the number of rows, n, in any OA (n, k, s, t) 

design for given values, k, s and t, or an upper bound on the 

number of columns, k, for given values, n, s and t as stated in 

Osuolale [2017]. The proof of this theorem is given in 

Hedayat et al. [4]. The use of these inequalities depends on 

whether t is even or odd. 

3. Orthogonal Array-Based Latin 

Hypercube Designs (Oalhds) 

Orthogonal Array-Based Latin Hypercube Design 

(OALHD) is a Latin hypercube design constructed based on 

orthogonal arrays in order to maintain a univariate 

stratification and achieve better space-filling properties that 

would otherwise not be possessed by a random Latin 

hypercube design. It is known that not all Latin hypercube 

designs are good and this study attempts to find good LHDs 

by hybridizing OAs and LHDs to have OALHDs with 

optimal space-filling properties. Although, several 

experimental space-filling criteria have been proposed in the 

literature to construct space-filling designs which give good 

coverage of the design space and also offer low correlation 

among the design points chosen. Orthogonal designs offer 

uncorrelated input variables that help to independently assess 

effects of individual input variable on the response. These 

two properties are important characteristics of good 

experimental designs for computer experiments. Maximin 

and Minimax Criteria are also useful criteria that guarantee 

space-filling properties. These criteria were originally 

proposed by Johnson et al. [8] for use in the development of 

computer experiments. Shewry and Wynn [23] and Currin et 

al. [3] use the maximum entropy principle to develop designs 

for computer experiments. An optimal Latin hypercube 
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design for computer experiments which either minimizes 

Integrated Mean Squared Error (IMSE) or maximizes 

entropy has also been discussed by Park [18]. For details of 

LHDs that are good based on some optimal design criteria, 

Iman and Conover [6], Owen [17], Morris and Mitchell [11], 

Ye [28], Ye et al. [29], Jin et al. [7], Joseph et al. [9] and 

Hernandez et al. [5] can be consulted. 

Tang [25] proposed OALHDs that are more suitable for 

computer experiments than general Latin hypercube designs. 

He started his construction with an OA (s2, k, s), and then 

replaced the s positions with symbol t by a random 

permutation of (t − 1)s + 1,..., ts, for all t=1,..., s. After the 

replacement procedure was done for all the k columns, the 

resulting matrix was denoted by

( ) 2  ,    1,. . .,  ,    1,  . . . ,  = = =ijD d i s j k  which forms an s2 

x k OALHD with s2 levels. Leary et al. [10] considered 

searching for optimal OA-based Latin hypercubes using an 

alternative distance metric that minimizes 

2
1 1

1

= = +
∑ ∑

n n

i j i
ijd

 

where ‘n’ is the number of sampled points and dij is the 

distance between points i and j and is defined as: 

( 1)
2

, 1,... , 1,...
−+ +

= = =ij ij

n

ij

l u
i n j k

n
d                 (1) 

This criterion is used to search for a restricted subspace of 

the set of all OALHDs. Leary et al. [10] adapted strategies 

found in Morris and Mitchell [11] and Ye et al. [29] by 

performing optimization using the simulated annealing and 

the columnwise-pairwise algorithms. 

Qian et al. [19] also proposed a method for constructing 

OALHDs as nested space-filling designs for multiple 

experiments with different levels of accuracy. They considered 

two experiments called low-accuracy experiment (LE) and 

high-accuracy experiment (HE). Their construction used a 2-

step procedure. The first step constructs an OALHD for Dl 

with size n1 and the second step chooses a subset of Dl with 

size n2 as Dh based on the maximin distance criterion using 

arg max  
,
min d(x ,x )

 
 = ∈ 
  

h D
i jD

x x D
i j

               (2) 

where D is any subset of Dl with size n2. OALHD appeared 

to be a good choice for Dl but Dh is far from being space-

filling in this procedure. Qian et al. [20] used nested 

orthogonal arrays and nested difference matrices to achieve 

space-filling and maximum stratification for both Dh and Dl 

to mitigate the drawbacks in the non-space-filling property of 

Dh earlier constructed by Qian et al. [19]. 

Osuolale et al. [13] proposed a technique for the 

construction of space-filling designs for three input variables 

computer experiments. Their method was meant for 

computer experiments with only three input variables and the 

technique limits the number of input variables to three with 

different number of runs. Yahya and Osuolale [27] also 

proposed a method of constructing OALHDs for computer 

experiments. Yahya and Osuolale [27] made use of an 

improved technique to construct OALHDs. The maximin 

distance criterion employed in this study to obtain the 

optimal designs made use of KNN search with Euclidean 

distance which finds the nearest neighbour in L for each 

point in L. 

4. Material and Methods 

A computer program via MATLAB 2016 was written to 

construct Orthogonal Array-Based Latin Hypercube Designs 

(OALHDs). A mathematical theorem was adopted in the 

construction of OALHDs and the desired OALHDs were 

optimized using a maximin distance criterion. The OALHD 

algorithm proposed employed the maximin distance criterion 

in a unique way using the k-Nearest Neighbour (KNN) 

search with Euclidean distance to maximize the minimum 

distance between any two design points from the possible 

design points of (n!)
k
 in order to obtain the optimal design 

with space-filling properties. The technique searched only for 

OALHDs and consequently, optimal designs that are 

guaranteed to have some space-filling properties were 

constructed. The OALHD main function is given as: 

[ ] ( )/ ,=D L f level strength                      (3) 

An uppercase character D represents Orthogonal Array 

(OA), L is the desired OALHD, factors {��, ��, … , ��} are the 

input (independent) variables and the level {0, 1, 2, … , � − 1} 

represents a set of entries used in the orthogonal array to 

construct the design. This method is based on the use of 

Galois fields. A field is composed of a set, F, and two binary 

operations that map F X F into F. A simple example is the set 

of non negative integers along with the operations of 

ordinary addition and multiplication. A Galois field is one for 

which the set, F, is finite. 

Theorem 2: Orthogonal Arrays using Bush Construction 

Type II method [4] 

If � = 2# , $ ≥ 1  and t=3 then there exists an %&(�' , 

� + 2, �, ()  of index unity. This technique works for 

OALHDs of large number of runs and different number of 

input variables and s levels with even and odd numbers. 

Having constructed the OA, ranking was done such that: 

i. Each column of the OA was sorted in ascending order 

ii. The sorting order was used to create a set taken from 

) = {1,2, … , �} 

iii. It returns a column vector of S as *
. 

Therefore: 

+ = ,*�*� … *#-.                            (4) 

With this, an initial OALHD was created as: 

. =
/� �.�

�
                                   (5) 
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where n is given as � � �1. To add space filling properties, 

the design, L, is optimised using a choice of maximin 

distance criterion as follows: 

i. A new design was created as follows: 

.�23 � /� �45
�                                (6) 

where uij is taken from a uniform distribution [0 1] and d 

from the OA earlier constructed. 

ii. The new design was scored based on k-Nearest 

Neighbours using Euclidean distance which found the 

nearest neighbour in L for each point in L. The 

algorithm was based on: 

*6'� � �.6 �  .'��.6 �  .'�7                  (7) 

The dst is the distance between .6 and .'. Since two nearest 

neighbours are required, *6'  is returned as a two-column 

matrix of which the second column was extracted as the 

maximum between the two columns since the first column 

contains zero all through. Then the extracted column was 

scored by minimizing the distance between the entries in the 

column using: 

�89:; � min �*6'��                              (8) 

where *6'� is the extracted second column. 

iii. An iteration was performed to determine the best design 

based on maximin criterion as follows: 

)89:;?@/ � �89:;�.�                            (9) 

)89:;�23 � �89:;�.�23�                       (10) 

. � A.�23  BC )89:;�23 > )89:;?@/
. %(ℎ;:FB�;                 (11) 

)89:;?@/ � G)89:;�23 )89:;�23 > )89:;?@/
)89:;?@/  %(ℎ;:FB�;          (12) 

5. Results 

The results of the orthogonal array-based Latin hypercube 

designs, OA (64, 6) LHD and OA (125, 7) LHD constructed 

from OA (64, 6, 4, 3) and OA (125, 7, 5, 3) are provided in the 

two cases in Table 1 and Table 2 with [D,L]=oa_test2 (4,3) 

and oa_test2 (5,3), respectively. The plots for the projections 

of design points among various input variables for OA (64, 6) 

LHD and OA (125, 7) LHD are also given in Figures 2 and 3, 

respectively. The proposed algorithm is capable of constructing 

OA (64, 6) LHD, OA (125, 7) LHD, OA (216, 8) LHD, OA 

(343, 9) LHD, OA (512, 10) LHD, OA (729, 11) LHD, OA 

(1000, 12) LHD, OA (1331, 13) LHD, OA (1728, 14) LHD, 

OA (2197, 15) LHD and OA (2744, 16) LHD. 

Table 1. Construction of OA (64, 6, 4, 3) and OA (64, 6) LHD. 

 
Orthogonal Array (D) Design Points (L) 

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 
1 0 0 0 0 0 0 0.014 0.014 0.014 0.014 0.014 0.014 

2 0 1 3 2 1 0 0.030 0.264 0.764 0.514 0.264 0.030 

3 0 2 1 3 2 0 0.045 0.514 0.264 0.764 0.514 0.045 

4 0 3 2 1 3 0 0.061 0.764 0.514 0.264 0.764 0.061 

5 0 1 2 3 0 1 0.077 0.280 0.530 0.780 0.030 0.264 

6 0 0 1 1 1 1 0.092 0.030 0.280 0.280 0.280 0.280 

7 0 3 3 0 2 1 0.108 0.780 0.780 0.030 0.530 0.295 

8 0 2 0 2 3 1 0.123 0.530 0.030 0.530 0.780 0.311 

9 0 2 3 1 0 2 0.139 0.545 0.795 0.295 0.045 0.514 

10 0 3 0 3 1 2 0.155 0.795 0.045 0.795 0.295 0.530 

11 0 0 2 2 2 2 0.170 0.045 0.545 0.545 0.545 0.545 

12 0 1 1 0 3 2 0.186 0.295 0.295 0.045 0.795 0.561 

13 0 3 1 2 0 3 0.202 0.811 0.311 0.561 0.061 0.764 

14 0 2 2 0 1 3 0.217 0.561 0.561 0.061 0.311 0.780 

15 0 1 0 1 2 3 0.233 0.311 0.061 0.311 0.561 0.795 

16 0 0 3 3 3 3 0.248 0.061 0.811 0.811 0.811 0.811 

17 1 1 1 1 0 0 0.264 0.327 0.327 0.327 0.077 0.077 

18 1 0 2 3 1 0 0.280 0.077 0.577 0.827 0.327 0.092 

19 1 3 0 2 2 0 0.295 0.827 0.077 0.577 0.577 0.108 

20 1 2 3 0 3 0 0.311 0.577 0.827 0.077 0.827 0.123 

21 1 0 3 2 0 1 0.327 0.092 0.842 0.592 0.092 0.327 

22 1 1 0 0 1 1 0.342 0.342 0.092 0.092 0.342 0.342 

23 1 2 2 1 2 1 0.358 0.592 0.592 0.342 0.592 0.358 

24 1 3 1 3 3 1 0.373 0.842 0.342 0.842 0.842 0.373 

25 1 3 2 0 0 2 0.389 0.858 0.608 0.108 0.108 0.577 

26 1 2 1 2 1 2 0.405 0.608 0.358 0.608 0.358 0.592 

27 1 1 3 3 2 2 0.420 0.358 0.858 0.858 0.608 0.608 

28 1 0 0 1 3 2 0.436 0.108 0.108 0.358 0.858 0.623 

29 1 2 0 3 0 3 0.452 0.623 0.123 0.873 0.123 0.827 

30 1 3 3 1 1 3 0.467 0.873 0.873 0.373 0.373 0.842 
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Orthogonal Array (D) Design Points (L) 

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 
31 1 0 1 0 2 3 0.483 0.123 0.373 0.123 0.623 0.858 

32 1 1 2 2 3 3 0.498 0.373 0.623 0.623 0.873 0.873 

33 2 2 2 2 0 0 0.514 0.639 0.639 0.639 0.139 0.139 

34 2 3 1 0 1 0 0.530 0.889 0.389 0.139 0.389 0.155 

35 2 0 3 1 2 0 0.545 0.139 0.889 0.389 0.639 0.170 

36 2 1 0 3 3 0 0.561 0.389 0.139 0.889 0.889 0.186 

37 2 3 0 1 0 1 0.577 0.905 0.155 0.405 0.155 0.389 

38 2 2 3 3 1 1 0.592 0.655 0.905 0.905 0.405 0.405 

39 2 1 1 2 2 1 0.608 0.405 0.405 0.655 0.655 0.420 

40 2 0 2 0 3 1 0.623 0.155 0.655 0.155 0.905 0.436 

41 2 0 1 3 0 2 0.639 0.170 0.420 0.920 0.170 0.639 

42 2 1 2 1 1 2 0.655 0.420 0.670 0.420 0.420 0.655 

43 2 2 0 0 2 2 0.670 0.670 0.170 0.170 0.670 0.670 

44 2 3 3 2 3 2 0.686 0.920 0.920 0.670 0.920 0.686 

45 2 1 3 0 0 3 0.702 0.436 0.936 0.186 0.186 0.889 

46 2 0 0 2 1 3 0.717 0.186 0.186 0.686 0.436 0.905 

47 2 3 2 3 2 3 0.733 0.936 0.686 0.936 0.686 0.920 

48 2 2 1 1 3 3 0.748 0.686 0.436 0.436 0.936 0.936 

49 3 3 3 3 0 0 0.764 0.952 0.952 0.952 0.202 0.202 

50 3 2 0 1 1 0 0.780 0.702 0.202 0.452 0.452 0.217 

51 3 1 2 0 2 0 0.795 0.452 0.702 0.202 0.702 0.233 

52 3 0 1 2 3 0 0.811 0.202 0.452 0.702 0.952 0.248 

53 3 2 1 0 0 1 0.827 0.717 0.467 0.217 0.217 0.452 

54 3 3 2 2 1 1 0.842 0.967 0.717 0.717 0.467 0.467 

55 3 0 0 3 2 1 0.858 0.217 0.217 0.967 0.717 0.483 

56 3 1 3 1 3 1 0.873 0.467 0.967 0.467 0.967 0.498 

57 3 1 0 2 0 2 0.889 0.483 0.233 0.733 0.233 0.702 

58 3 0 3 0 1 2 0.905 0.233 0.983 0.233 0.483 0.717 

59 3 3 1 1 2 2 0.920 0.983 0.483 0.483 0.733 0.733 

60 3 2 2 3 3 2 0.936 0.733 0.733 0.983 0.983 0.748 

61 3 0 2 1 0 3 0.952 0.248 0.748 0.498 0.248 0.952 

62 3 1 1 3 1 3 0.967 0.498 0.498 0.998 0.498 0.967 

63 3 2 3 2 2 3 0.983 0.748 0.998 0.748 0.748 0.983 

64 3 3 0 0 3 3 0.998 0.998 0.248 0.248 0.998 0.998 

[D,L]=oa_test2 (4, 3). 

 

Figure 2. Projection properties of OA (64, 6) LHD. 
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Table 2. Construction of OA (125, 7, 5, 3) and OA (125, 7) LHD. 

 
Orthogonal Array (D) Design Points (L) 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1 0 0 0 0 0 0 0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

2 0 1 4 5 6 1 0 0.015 0.159 0.495 0.615 0.767 0.207 0.015 

3 0 2 3 1 7 2 0 0.023 0.311 0.375 0.127 0.887 0.407 0.023 

4 0 3 7 4 1 3 0 0.031 0.463 0.879 0.495 0.127 0.607 0.031 

5 0 4 6 2 5 4 0 0.039 0.615 0.751 0.247 0.639 0.807 0.039 

6 0 1 2 3 4 0 1 0.047 0.167 0.255 0.367 0.519 0.015 0.207 

7 0 0 6 6 2 1 1 0.055 0.015 0.759 0.743 0.255 0.215 0.215 

8 0 3 1 2 3 2 1 0.063 0.471 0.135 0.255 0.391 0.415 0.223 

9 0 2 5 7 5 3 1 0.071 0.319 0.631 0.879 0.647 0.615 0.231 

10 0 5 4 1 1 4 1 0.079 0.719 0.503 0.135 0.135 0.815 0.239 

11 0 2 4 6 3 0 2 0.087 0.327 0.511 0.751 0.399 0.023 0.407 

12 0 3 0 3 5 1 2 0.095 0.479 0.015 0.375 0.655 0.223 0.415 

13 0 0 7 7 4 2 2 0.103 0.023 0.887 0.887 0.527 0.423 0.423 

14 0 1 3 2 2 3 2 0.111 0.175 0.383 0.263 0.263 0.623 0.431 

15 0 6 2 4 6 4 2 0.119 0.815 0.263 0.503 0.775 0.823 0.439 

16 0 3 6 5 7 0 3 0.127 0.487 0.767 0.623 0.895 0.031 0.607 

17 0 2 2 0 1 1 3 0.135 0.335 0.271 0.015 0.143 0.231 0.615 

18 0 1 5 4 0 2 3 0.143 0.183 0.639 0.511 0.015 0.431 0.623 

19 0 0 1 1 6 3 3 0.151 0.031 0.143 0.143 0.783 0.631 0.631 

20 0 7 0 7 2 4 3 0.159 0.911 0.023 0.895 0.271 0.831 0.639 

21 0 4 3 7 6 0 4 0.167 0.623 0.391 0.903 0.791 0.039 0.807 

22 0 5 7 2 0 1 4 0.175 0.727 0.895 0.271 0.023 0.239 0.815 

23 0 6 0 6 1 2 4 0.183 0.823 0.031 0.759 0.151 0.439 0.823 

24 0 7 4 3 7 3 4 0.191 0.919 0.519 0.383 0.903 0.639 0.831 

25 0 0 5 5 3 4 4 0.199 0.039 0.647 0.631 0.407 0.839 0.839 

26 1 1 1 1 1 0 0 0.207 0.191 0.151 0.151 0.159 0.047 0.047 

27 1 0 5 4 7 1 0 0.215 0.047 0.655 0.519 0.911 0.247 0.055 

28 1 3 2 0 6 2 0 0.223 0.495 0.279 0.023 0.799 0.447 0.063 

29 1 2 6 5 0 3 0 0.231 0.343 0.775 0.639 0.031 0.647 0.071 

30 1 5 7 3 4 4 0 0.239 0.735 0.903 0.391 0.535 0.847 0.079 

31 1 0 3 2 5 0 1 0.247 0.055 0.399 0.279 0.663 0.055 0.247 

32 1 1 7 7 3 1 1 0.255 0.199 0.911 0.911 0.415 0.255 0.255 

33 1 2 0 3 2 2 1 0.263 0.351 0.039 0.399 0.279 0.455 0.263 

34 1 3 4 6 4 3 1 0.271 0.503 0.527 0.767 0.543 0.655 0.271 

35 1 4 5 0 0 4 1 0.279 0.631 0.663 0.031 0.039 0.855 0.279 

36 1 3 5 7 2 0 2 0.287 0.511 0.671 0.919 0.287 0.063 0.447 

37 1 2 1 2 4 1 2 0.295 0.359 0.159 0.287 0.551 0.263 0.455 

38 1 1 6 6 5 2 2 0.303 0.207 0.783 0.775 0.671 0.463 0.463 

39 1 0 2 3 3 3 2 0.311 0.063 0.287 0.407 0.423 0.663 0.471 

40 1 7 3 5 7 4 2 0.319 0.927 0.407 0.647 0.919 0.863 0.479 

41 1 2 7 4 6 0 3 0.327 0.367 0.919 0.527 0.807 0.071 0.647 

42 1 3 3 1 0 1 3 0.335 0.519 0.415 0.159 0.047 0.271 0.655 

43 1 0 4 5 1 2 3 0.343 0.071 0.535 0.655 0.167 0.471 0.663 

44 1 1 0 0 7 3 3 0.351 0.215 0.047 0.039 0.927 0.671 0.671 

45 1 6 1 6 3 4 3 0.359 0.831 0.167 0.783 0.431 0.871 0.679 

46 1 5 2 6 7 0 4 0.367 0.743 0.295 0.791 0.935 0.079 0.847 

47 1 4 6 3 1 1 4 0.375 0.639 0.791 0.415 0.175 0.279 0.855 

48 1 7 1 7 0 2 4 0.383 0.935 0.175 0.927 0.055 0.479 0.863 

49 1 6 5 2 6 3 4 0.391 0.839 0.679 0.295 0.815 0.679 0.871 

50 1 1 4 4 2 4 4 0.399 0.223 0.543 0.535 0.295 0.879 0.879 

51 2 2 2 2 2 0 0 0.407 0.375 0.303 0.303 0.303 0.087 0.087 

52 2 3 6 7 4 1 0 0.415 0.527 0.799 0.935 0.559 0.287 0.095 

53 2 0 1 3 5 2 0 0.423 0.079 0.183 0.423 0.679 0.487 0.103 

54 2 1 5 6 3 3 0 0.431 0.231 0.687 0.799 0.439 0.687 0.111 

55 2 6 4 0 7 4 0 0.439 0.847 0.551 0.047 0.943 0.887 0.119 

56 2 3 0 1 6 0 1 0.447 0.535 0.055 0.167 0.823 0.095 0.287 

57 2 2 4 4 0 1 1 0.455 0.383 0.559 0.543 0.063 0.295 0.295 

58 2 1 3 0 1 2 1 0.463 0.239 0.423 0.055 0.183 0.495 0.303 

59 2 0 7 5 7 3 1 0.471 0.087 0.927 0.663 0.951 0.695 0.311 

60 2 7 6 3 3 4 1 0.479 0.943 0.807 0.431 0.447 0.895 0.319 

61 2 0 6 4 1 0 2 0.487 0.095 0.815 0.551 0.191 0.103 0.487 

62 2 1 2 1 7 1 2 0.495 0.247 0.311 0.175 0.959 0.303 0.495 

63 2 2 5 5 6 2 2 0.503 0.391 0.695 0.671 0.831 0.503 0.503 



98 Kazeem Adewale Osuolale:  Orthogonal Array-Based Latin Hypercube Designs for Computer Experiments  

 

 
Orthogonal Array (D) Design Points (L) 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
64 2 3 1 0 0 3 2 0.511 0.543 0.191 0.063 0.071 0.703 0.511 

65 2 4 0 6 4 4 2 0.519 0.647 0.063 0.807 0.567 0.903 0.519 

66 2 1 4 7 5 0 3 0.527 0.255 0.567 0.943 0.687 0.111 0.687 

67 2 0 0 2 3 1 3 0.535 0.103 0.071 0.311 0.455 0.311 0.695 

68 2 3 7 6 2 2 3 0.543 0.551 0.935 0.815 0.311 0.511 0.703 

69 2 2 3 3 4 3 3 0.551 0.399 0.431 0.439 0.575 0.711 0.711 

70 2 5 2 5 0 4 3 0.559 0.751 0.319 0.679 0.079 0.911 0.719 

71 2 6 1 5 4 0 4 0.567 0.855 0.199 0.687 0.583 0.119 0.887 

72 2 7 5 0 2 1 4 0.575 0.951 0.703 0.071 0.319 0.319 0.895 

73 2 4 2 4 3 2 4 0.583 0.655 0.327 0.559 0.463 0.519 0.903 

74 2 5 6 1 5 3 4 0.591 0.759 0.823 0.183 0.695 0.719 0.911 

75 2 2 7 7 1 4 4 0.599 0.407 0.943 0.951 0.199 0.919 0.919 

76 3 3 3 3 3 0 0 0.607 0.559 0.439 0.447 0.471 0.127 0.127 

77 3 2 7 6 5 1 0 0.615 0.415 0.951 0.823 0.703 0.327 0.135 

78 3 1 0 2 4 2 0 0.623 0.263 0.079 0.319 0.591 0.527 0.143 

79 3 0 4 7 2 3 0 0.631 0.111 0.575 0.959 0.327 0.727 0.151 

80 3 7 5 1 6 4 0 0.639 0.959 0.711 0.191 0.839 0.927 0.159 

81 3 2 1 0 7 0 1 0.647 0.423 0.207 0.079 0.967 0.135 0.327 

82 3 3 5 5 1 1 1 0.655 0.567 0.719 0.695 0.207 0.335 0.335 

83 3 0 2 1 0 2 1 0.663 0.119 0.335 0.199 0.087 0.535 0.343 

84 3 1 6 4 6 3 1 0.671 0.271 0.831 0.567 0.847 0.735 0.351 

85 3 6 7 2 2 4 1 0.679 0.863 0.959 0.327 0.335 0.935 0.359 

86 3 1 7 5 0 0 2 0.687 0.279 0.967 0.703 0.095 0.143 0.527 

87 3 0 3 0 6 1 2 0.695 0.127 0.447 0.087 0.855 0.343 0.535 

88 3 3 4 4 7 2 2 0.703 0.575 0.583 0.575 0.975 0.543 0.543 

89 3 2 0 1 1 3 2 0.711 0.431 0.087 0.207 0.215 0.743 0.551 

90 3 5 1 7 5 4 2 0.719 0.767 0.215 0.967 0.711 0.943 0.559 

91 3 0 5 6 4 0 3 0.727 0.135 0.727 0.831 0.599 0.151 0.727 

92 3 1 1 3 2 1 3 0.735 0.287 0.223 0.455 0.343 0.351 0.735 

93 3 2 6 7 3 2 3 0.743 0.439 0.839 0.975 0.479 0.551 0.743 

94 3 3 2 2 5 3 3 0.751 0.583 0.343 0.335 0.719 0.751 0.751 

95 3 4 3 4 1 4 3 0.759 0.663 0.455 0.583 0.223 0.951 0.759 

96 3 7 0 4 5 0 4 0.767 0.967 0.095 0.591 0.727 0.159 0.927 

97 3 6 4 1 3 1 4 0.775 0.871 0.591 0.215 0.487 0.359 0.935 

98 3 5 3 5 2 2 4 0.783 0.775 0.463 0.711 0.351 0.559 0.943 

99 3 4 7 0 4 3 4 0.791 0.671 0.975 0.095 0.607 0.759 0.951 

100 3 3 6 6 0 4 4 0.799 0.591 0.847 0.839 0.103 0.959 0.959 

101 4 4 4 4 4 0 0 0.807 0.679 0.599 0.599 0.615 0.167 0.167 

102 4 5 0 1 2 1 0 0.815 0.783 0.103 0.223 0.359 0.367 0.175 

103 4 6 7 5 3 2 0 0.823 0.879 0.983 0.719 0.495 0.567 0.183 

104 4 7 3 0 5 3 0 0.831 0.975 0.471 0.103 0.735 0.767 0.191 

`105 4 0 2 6 1 4 0 0.839 0.143 0.351 0.847 0.231 0.967 0.199 

106 4 5 6 7 0 0 1 0.847 0.791 0.855 0.983 0.111 0.175 0.367 

107 4 4 2 2 6 1 1 0.855 0.687 0.359 0.343 0.863 0.375 0.375 

108 4 7 5 6 7 2 1 0.863 0.983 0.735 0.855 0.983 0.575 0.383 

109 4 6 1 3 1 3 1 0.871 0.887 0.231 0.463 0.239 0.775 0.391 

110 4 1 0 5 5 4 1 0.879 0.295 0.111 0.727 0.743 0.975 0.399 

111 4 6 0 2 7 0 2 0.887 0.895 0.119 0.351 0.991 0.183 0.567 

112 4 7 4 7 1 1 2 0.895 0.991 0.607 0.991 0.247 0.383 0.575 

113 4 4 3 3 0 2 2 0.903 0.695 0.479 0.471 0.119 0.583 0.583 

114 4 5 7 6 6 3 2 0.911 0.799 0.991 0.863 0.871 0.783 0.591 

115 4 2 6 0 2 4 2 0.919 0.447 0.863 0.111 0.367 0.983 0.599 

116 4 7 2 1 3 0 3 0.927 0.999 0.367 0.231 0.503 0.191 0.767 

117 4 6 6 4 5 1 3 0.935 0.903 0.871 0.607 0.751 0.391 0.775 

118 4 5 1 0 4 2 3 0.943 0.807 0.239 0.119 0.623 0.591 0.783 

119 4 4 5 5 2 3 3 0.951 0.703 0.743 0.735 0.375 0.791 0.791 

120 4 3 4 3 6 4 3 0.959 0.599 0.615 0.479 0.879 0.991 0.799 

121 4 0 7 3 2 0 4 0.967 0.151 0.999 0.487 0.383 0.199 0.967 

122 4 1 3 6 4 1 4 0.975 0.303 0.487 0.871 0.631 0.399 0.975 

123 4 2 4 2 5 2 4 0.983 0.455 0.623 0.359 0.759 0.599 0.983 

124 4 3 0 7 3 3 4 0.991 0.607 0.127 0.999 0.511 0.799 0.991 

125 4 4 1 1 7 4 4 0.999 0.711 0.247 0.239 0.999 0.999 0.999 

[D,L]=oa_test2 (5, 3). 
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Figure 3. Projection properties of OA (125, 7) LHD. 

5.1. Discussion of Constructed OA (64, 6) LHD 

The technique has been applied to construct OALHDs 

using Galois fields of order s where s can be even or odd 

number. The two constructed OA (64, 6) LHD, and OA (125, 

7) LHD using Galois fields of orders 4 and 5, respectively. 

The orthogonal array, D, constructed in the first case using a 

Galois field of order 4 revealed that each of the 64 possible 

rows 000, 013, 021, 032, 012,…., 330 appears a single time 

and this qualified it to be used to construct the desired OA 

(64, 6) LHD. The OA (64, 6) LHD contains 64 experimental 

runs (rows) and 6 factors (columns). 

5.2. Discussion of Constructed OA (125, 7) LHD 

In this case, the orthogonal array, D, constructed using a 

Galois field of order 5 revealed that each of the 125 possible 

rows 000, 014, 023, 037, 046, …., 441 appears a single time and 

this qualified it to be used to construct the desired OA (125, 7) 

LHD. The OA (125, 7) LHD has 125 experimental runs (rows) 

and 7 factors (columns). The two cases of the Orthogonal array-

based Latin hypercube designs (OALHDs) constructed in this 

study have space-filling properties as depicted in Figures 2 and 3 

and they achieve univariate stratification. 

6. Conclusion 

The technique presented in this study is an improvement on 

the early paper which adopted the Bush Construction Type I 

technique and it therefore aimed at proposing a novel approach 

that employed the maximin criterion in the k-Nearest Neighbour 

with Euclidean distance for constructing strong orthogonal 

arrays along with the Orthogonal Array-Based Latin Hypercube 

Designs (OALHDs). The OA (64, 6) LHD and OA (125, 7) 

LHD constructed have better space-filling properties and they 

achieve uniformity in each dimension. This study concludes that 

the constructed OALHDs can be used whenever interest is 

focused on performing either a conventional physical 

experiment or computer experiment on real life situations. The 

construction of orthogonal array- based Latin hypercube designs 

has been simplified in this study using computer codes written in 

MATLAB that produce results before one could say Jack 

Robinson to get a desired result. The OALHDs constructed via 

this method will be adopted to improve study design in 

biomedical research for a future study. 
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