
 
Nanoscience and Nanometrology 
2015; 1(1): 15-19 

Published online July 27, 2015 (http://www.sciencepublishinggroup.com/j/nsnm) 

doi: 10.11648/j.nsnm.20150101.13 

 

Surface Acoustic Waves in Thin Films Nanometrology 

Andrea Bettucci
 

Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, Rome, Italy 

Email address: 
andrea.bettucci@uniroma1.it 

To cite this article: 
Andrea Bettucci. Surface Acoustic Waves in Thin Films Nanometrology. Nanoscience and Nanometrology. Vol. 1, No. 1, 2015, pp. 15-19. 

doi: 10.11648/j.nsnm.20150101.13 

 

Abstract: Thin films nanometrology is an emerging field in nanoscience as the synthesis, processing and applications of 

nanostructured thin films require an in-depth knowledge of their elastic constants. The elastic energy of a surface acoustic 

wave propagating in a solid medium, is concentrated at the interface between the solid and air (or a sufficiently rarified 

medium); consequently, high frequency surface acoustic waves with sub-micrometer wavelengths are an extraordinary tool for 

a qualitative and quantitative elastic characterization of thin films. In this article, a short review is presented to describe the 

main ultrasound techniques based on surface acoustic waves for thin films characterization and to highlight the probing limits 

of acoustic nanometrology. 
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1. Introduction 

In the realm of nanotechnology, the realization of thin 

films and nano-structured thin films systems plays an 

important role for their industrial applications (e.g. devices 

integrating electrical and mechanical functionality on the 

nanoscale, optical coatings, displays, physical and chemical 

sensors, photovoltaic cells, batteries, etc.). Thin films may 

also be used for protection of substrate materials against 

corrosion, oxidation and wear, or to reduce friction or 

electrical resistance, as well. 

The quantitative study of the mechanical properties of thin 

films is a main issue especially in the microelectronic 

industry. As elastic properties of a thin film are strongly 

affected by its thickness, techniques are being developed for 

thin film characterization [1]. Semiconductor industry, for 

example, strongly relies on nano-indentation measurements 

for the mechanical characterization of thin films: while 

having high lateral resolution, this is a destructive technique 

that is not reliable if the film is thinner than 500 nm. 

Moreover measurements are influenced by the elastic 

parameters of the film substrate and the choice of the 

substrate is imposed by the material hardness [2].  

Surface acoustic waves are dispersive waves offering an 

important tool for non-destructive thin films metrology 

because, during propagation in thin films, wave velocity, 

vibration amplitude and phase are strongly influenced by 

film thickness and elastic constants. 

2. Surface Acoustic Waves 

Surface acoustic waves (SAWs), also known as Rayleigh 

waves, are elastic waves propagating over a plane boundary 

between semi-infinite solid and a sufficiently rarified 

medium (air or a liquid, for instance) [3-6]. They consist in a 

longitudinal and shear displacement coupled together and 

travelling at the same velocity; the two components are in 

phase quadrature so that the polarization locus is elliptical; in 

particular, the displacement vector rotation is 

counterclockwise (retrograde) at the material surface and 

clockwise (progressive) beneath the surface [3,4,7,8]. 

The vibration amplitude of SAWs is highest at the surface 

of the solid and decay exponentially within the material; at a 

depth corresponding to few wavelengths, the vibration 

amplitude decreases to 1/e the value it has on the surface of 

the material. This distance to the material surface is defined 

as the penetration depth of SAWs: the higher the frequency 

the more the elastic energy of SAWs is concentrated in a thin 

layer starting at the sample surface. This makes SAWs 

propagation very sensitive to surface elastic characteristics 

and to micro structural gradients close to the surface; 

consequently SAWs are a powerful nondestructive tool for 

the characterization of thin films/substrate configuration in 

which the film to be tested could be much thinner than the 

penetration depth of the wave. 

Whereas for a completely homogeneous sample the wave 

velocity is constant, Rayleigh waves propagating on a thin 
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film deposited on a substrate are dispersive because wave 

velocity is function of both the frequency and the layer 

thickness and the elastic parameters. 

There are several methods for SAWs generation, but when 

experimenting with thin films some physical constrains arise 

(e.g. reduced lateral dimensions, absence of surface loading, 

thin films anisotropy, etc.) reducing the choice of applicable 

methods. Only two of them can be exploited for thin films 

characterization: acoustic microscope and picosecond 

photoacoustic. 

3. Acoustic Microscope 

Acoustic microscopy is basically a pulse-echo technique 

where SAWs play a central role in both the intensity and the 

phase of the reflected signal. The heart of the acoustic 

microscope is the acoustic lens, made of sapphire, Fig.1 [9-

12].  

 

Figure 1. Sketch of the acoustic lens and of the simplified ray optics model 

to show the physical origin of the V(z) curve. 

A radio frequency tone burst containing a single radio 

frequency is applied to the piezoelectric transducer fixed at 

the top of the lens. The transducer converts the radio 

frequency signal into an ultrasonic plane wave propagating 

along the lens axis toward the surface of a spherical cavity 

that has been carefully ground and polished in the lens body. 

A coupling liquid is placed between the lens and the sample 

to transmit the acoustic wave: water is most usually used. 

Due to the acoustic velocity mismatch between sapphire and 

water, the plane waves crossing the sapphire-water interface 

will be refracted into a spherical waves converging onto the 

focal point of the lens, which is generally placed beneath the 

sample surface. 

Using a simple ray model [13-15] the normal ray A is 

reflected by the sample surface towards the transducer but, if 

the aperture of the lens is wide enough, a Rayleigh wave can 

be excited propagating along the sample surface: that 

happens for rays, like ray B, incident at a Rayleigh angle R 

given by the Snell's law sin�� = �� = ��  where ��  is the 

wave velocity in the water and ��  is the Rayleigh velocity 

that depends on the Poisson's ratio of the sample material [3.  

Really, as the surface of the sample is in contact with the 

fluids, while propagating, Rayleigh wave leaks energy into 

the fluid generating longitudinal waves propagating (at 

Rayleigh angle) toward the lens where, therefore, a ray C, 

symmetrically placed with respect to the incident ray B, 

travels back to the transducer. 

The electrical signal delivered by the ultrasonic transducer, 

V, in the time interval when it acts as a receiver through the 

inverse piezoelectric effect, is due to the interference 

between the plane wave represented by the ray C, and the 

acoustic waves directly reflected from the sample surface, 

represented by the ray A. This results, as can be seen in Fig. 2, 

in a set of interference fringes observed in the �(	) function. 

According to the ray theory, the phase difference between 

the two waves is a function of the defocus, ∆	 , (by 

convention z = 0 refers to the focal plane of the lens) and is 

given as follows: 

 

Figure 2. V(z) curve for a gold film on fused quartz substrate at 190 MHz. 

(From J. Kushibiki, T. Ishikawa and N. Chubachi, , Appl. Phys. Lett., 57, 

1990, pp. 1967-1969. With permission). 

∆	 = 2	 
�� �1 −  ���� ���� +  �� tan ��          (1) 

wher ��  and ��  stand for the wavenumber in the water 

between the lens and the sample and for surface wave, 

respectively. A phase change of 2� in relative phase 

difference corresponds to a peak interval in the �(	) function. 

Using Eq. (1) and Snell’s law, it follows that 

∆	 = � !"(�#��� ��)                             (2) 

f being the frequency of the elastic wave. Eq.(2) can be 

rewritten in a the form that explicitly expresses the surface 

acoustic velocity, �� , as function of ∆	: 
�� =  � 

&�#��# ' ( ) ∆*�( 
                           (3) 

This simple ray optics model allows quantitative 

measurement of the phase velocity of surface acoustic waves 

from the V(z) curve, and characterization of acoustic 

properties of materials. In particular, thickness measurements 

of thin films can be carried out using dispersion 

characteristic of surface acoustic waves [16,17]. By 

measuring V(z) at a certain frequency and finding through the 

Eq. (3) the corresponding Rayleigh velocity, the layer 

thickness can be deduced from the theoretical dispersion 

relation of the SAWs. This technique can be applied with 

high accuracy without the need of standards [18]. The only 

drawback is that is difficult to measure the larger layer 
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thickness as multi SAWs modes are excited into the structure; 

moreover the presence of a coupling liquid between the 

acoustic lens and the sample surface, in some cases, could 

change the chemical characteristic of the film. 

SAWs velocity and attenuation in thin films can be 

obtained from the periodic variation and the decay of the V(z) 

curve; if mass density is known, elastic constant can be 

subsequently obtained by using an appropriate technique to 

best fit theoretical velocity obtained from the experimental 

measured V(z) curve. With a spherical acoustic lens, 

Rayleigh waves are generated by a point-source on the 

surface of the sample: this experimental configuration is well 

suited only for the characterization of homogeneous thin 

films. For anisotropic films, cylindrical lenses have been 

developed to create a line-source of elastic waves: in this 

case, Rayleigh waves propagates in a specific direction, 

normal to the focal line, and it is possible to measure 

velocities and elastic constants in anisotropic elastic thin 

films, where the direction of wave energy is not always 

parallel to k-vector [19].  

In particular, Achenbach and coworkers have used the 

Rayleigh waves generated by an acoustic microscope with 

cylindrical lenses for determining the elastic constants of 

anisotropic films deposited on anisotropic substrates from the 

V(z) measurements [20]. The technique is based on an 

inversion procedure in which best estimates of the elastic 

constants are put in a theoretical model of V(z) to calculate 

velocities and amplitude of the leaky Rayleigh wave. The 

values of the elastic constant are then compared with those 

experimentally measured. The difference is used to adjust the 

elastic constants and the process is repeated until 

convergence by least square method is obtained. The 

presence of stress can also be measured as stress modify 

sound velocity through third-order elastic constants [21] 

4. Picosecond Photoacoustic 

SAWs can also be generated through the photoacoustic 

effect [22]. To generate a stress pulse, the simplest method is 

to direct a short pulse of light from a power laser at the 

surface of an optically absorbed material. The light is 

absorbed within a certain absorption length that depends on 

the material parameters. The absorbed electromagnetic 

energy is transformed into heat in the region where the 

radiation is absorbed and, according to the repetition rate of 

the pulse, the temperature of this region periodically changes, 

causing pressure variations that propagate within the sample 

body and at its surface. If the time duration of pulse is very 

short, SAWs are generated as the source of acoustic waves is 

confined at the sample surface. If the laser beam is focused 

by a cylindrical lens, a line thermoelastic source is produced 

on the surface of the specimen that generates directional 

wide-band SAWs [23]. 

The surface displacement caused by SAWs propagation 

can be detected in non-contact mode by a laser interferometer 

at different distances from the laser focus line yielding the 

amplitude and the phase spectra of the waveforms. From the 

phase spectra the phase velocity can be calculated for all the 

frequencies included in the waveforms thus obtaining the 

dispersion curves of the propagating surface modes. The 

elastic parameters of the material could be calculated by 

fitting the dispersion curves deduced from a theory of SAWs 

dispersion. The technique is very sensible to micro-structural 

variations near the sample surface and, in case of thin films, 

it is possible to measure both the mass density and the 

Young’s modulus of the film [24]. Compared to scanning 

probe microscopy, the technique has a poor lateral resolution 

due to the dimension of the ultrasound line-source, but it is a 

completely nondestructive measurement method of some 

material parameters. 

 

Figure 3. Schematic diagram of a pump-probe experiment for a 600 nm 

thick SiO2 film deposited on a silicon substrate. (a) off the grating and (b) on 

the grating (a=400 to 800 nm, h=28 nm, and d=200 nm) (From P. A. Mante, 

J. F. Robillard and A. Devos, Appl. Phys. Lett., 93, 071909, 2008. With 

permission). 

Resolution and efficiency of picosecond photoacustics in the 

generation of SAWs in thin films can be increased using a 

nanostructured, two dimensional metallic grating deposited in 

a small region of the thin film. The grating acts as a narrow 

band interdigital transducer generating, by thermo-acoustic 

effect, SAWs with a very short wavelength given by the 

spacing of the grating [25]. The impulsive expansion of the 

grating due to the absorbed electromagnetic laser light from a 

power laser (the pump), causes the simultaneous generation of 

longitudinal wave that travels down into the film and is 

reflected back from the interface with the substrate. The 

detection of the shortest wavelength SAWs and longitudinal 

waves, requires a comparably short wavelength probe. This is 

obtained with another low power pulsed laser (the probe), 

which is time delayed with respect to the pump, and is focused 

onto the sample surface where it is diffracted by the dynamic 

surface deformation. A classical pump-probe experimental 

scheme for measuring simultaneously longitudinal and 

Rayleigh wave velocity, is shown in Fig. 3.  

The longitudinal sound velocity �+  and the mass density , 

are related to the Young’s modulus - and the Poisson’s ratio . 

according to [26] 

�+ = / 0(�#1)2(�31)(�#!1).                      (4) 
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This means that the -  and .  cannot induced from a 

measure of �+  and , . Anyway, using Victorov’s 

approximation [27] 

���5 = 6.7�8#('5'9)(
6.7:#('5'9)(                              (5) 

the velocity of shear wave velocity, �;, can be deduced from 

longitudinal and Rayleigh wave velocity. In this way the 

values of Young’s modulus and Poisson’s ratio can be 

obtained because the transverse wave velocity is expressed 

by the following equation [24]: 

�; = / 0!2(�31).                               (6) 

The feasibility of such a technique has been 

experimentally demonstrated, for example, with a complete 

mechanical characterization of 600 nm thick SIO2 film [26]. 

This technique is limited to isotropic thin films and the 

presence of the deposited nanostructures does introduce a 

loading on the film, which modify the SAWs velocity 

somewhat. This effect can be taken into account by adjusting 

the properties of the modeled thin film until the experimental 

observed velocity dispersion is recovered yielding a more 

precise determination of the elastic moduli [29].  

Recently, by using coherent extreme ultraviolet light 

detection, the mechanical properties of thin films with a 

thickness well under 100 nm, have been measured [30].  

5. Conclusions 

In conclusion, a short review has been presented describing 

the two main non-contact ultrasound techniques based on 

SAWs for thin films characterization: acoustic microscope and 

picosecond photoacustics. Both the techniques allow the 

Young’s modulus and the Poisson’s ratio of isotropic thin films 

to be measured. Using a cylindrical lens, acoustic microscope 

can be used also for testing the mechanical properties of 

anisotropic thin films, although resolution is limited by the 

maximum usable frequency (≈ 1 GHz at room temperature) 

due to the strong attenuation of the reflected signal. 

Picosecond photoacustics using a ultraviolet laser light as a 

probe beam, can confine the measurements of the elastic 

moduli in a layer of a thickness < 50 nm, but it requires a 

nanostructured metal array to be deposited on the thin film, 

introducing a (small) loading to the films and it can hardly be 

applied on polymeric thin films. 
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