Science Discovery

2021; 9(6): 424-427

http://www.sciencepublishinggroup.com/j/sd

doi: 10.11648/j.sd.20210906.34

ISSN: 2331-0642 (Print); ISSN: 2331-0650 (Online)

Estimation and Its Evolution of CO₂ Emission Factors from Heat Power Consumption in China: 2000-2019

Yang Wangzhou

College of Economics and Management, Yunnan Normal University, Kunming, China

Email address:

asywzh@sina.com

To cite this article:

Yang Wangzhou. Estimation and Its Evolution of CO₂ Emission Factors from Heat Power Consumption in China: 2000-2019. *Science Discovery*. Vol. 9, No. 6, 2021, pp. 424-427. doi: 10.11648/j.sd.20210906.34

Received: November 27, 2021; Accepted: December 23, 2021; Published: December 29, 2021

Abstract: CO₂ emission of energy consumption includes direct and indirect emission, and CO₂ emission of heat power consumption is indirect emission. However, most scholars do not include heat power consumption in CO₂ emission calculation of energy consumption, which will result in a certain degree of deviation between calculation results and actual situation, and affect scientificalness and accuracy of research conclusions. Therefor, it is of profound significance to estimate CO₂ emission factor from heat power consumption, and which is served as a basis for calculating indirect CO₂ emission of heat power consumption. Based on statistical data of energy intermediate and final consumption as well as CO₂ emission accounting from heat power production and supply, this paper gives an estimation the CO₂ emission factor of national heat power consumption in China from 2000 to 2019. Results are shown as following: Affected by factors such as the changes in CO₂ emission efficiency of heating supply and the increase in the proportion of natural geothermal energy in the heat power consumption structure, CO₂ emission factor of heat power consumption has shown a downward trend in China, from 0.136 tCO₂/GJ to 0.117 tCO₂/GJ, which shows a significant decrease. In addition, the estimated result after 2013 is slightly higher than the national standard for heat poweremission factor of 0.110 tCO₂/GJ, but this difference is very small in last two years.

Keywords: Heat Power Production, Heat Power Consumption, CO₂ Emission Factor of Heat Power, China

中国热力消费碳排放因子的估算及其演变: 2000-2019

杨旺舟

云南师范大学经济与管理学院,昆明,中国

邮箱

asywzh@sina.com

摘要: 能源消费引起的 CO_2 排放包括直接排放、间接排放两个方面,热力消费引起的 CO_2 排放属于间接排放。而大多数 学者在能源消费 CO_2 排放量核算中不将热力消费纳入其核算范围,这将在一定程度上导致测算结果与实际产生偏离,影响研究结论的科学性和准确性。因此,估算热力消费的 CO_2 排放因子,为核算热力消费 CO_2 间接排放提供依据,具有重要意义。基于热力生产和供应的能源中间消费、终端消费数据以及热力生产和供应的碳排放核算,估算2000年-2019年中国热力消费的 CO_2 排放因子。结果表明:受供热产出的碳排放效率变化、热力消费结构中天然地热比重增加等因素的综合影响,中国热力消费的 CO_2 排放因子呈现下降趋势,从 $0.136tCO_2/GJ$ 下降为 $0.117tCO_2/GJ$,降幅较为明显。2013年后的估算结果与国家建议采用的热力排放因子 $0.110tCO_2/GJ$ 标准相比稍偏高,但最近两年的相差很小。

关键词: 热力消费, 热力生产, 热力碳排放因子, 中国

1. 引言

准确核算能源消费的CO。排放量,对客观认识和把握 CO₂排放源、排放结构及其演变规律,以及国家实现"碳达 峰"、"碳中和"目标具有重要意义。热力(蒸汽和热水) 属不能直接燃烧的非燃料性能源,其消费引起的间接CO。 排放往往被忽视。事实上,能源消费引起的CO₂排放包括 两个方面: (1) 化石能源燃烧的直接排放。(2) 电力、 热力消耗的间接排放。不少学者在研究工业[1]、服务业[2]、 产业[3,4]能源消费或者区域能源消费[5-6]引起的CO₂排放 量时,未将热力消费引起的间接排放纳入其核算范围。这 将在一定程度上导致测算结果与实际产生偏离,影响研究 结论的科学性和准确性;按照热力的来源分类,来自地球 内部的地热能(地下热水、地热蒸汽和温泉等)为一次能 源,通过化石能源等投入生产的热力(供热)为二次能源。 供热生产消费化石能源(中间消费)以及热力生产和供应 的终端能源消费均产生CO₂排放。2019年,供热投入原煤 3.30亿t, 占全国原煤消费量合计(等于加工转换投入量、 终端消费量和损失量之和[7]) 40.09亿t的8.24%, 是原煤 终端消费量5.90亿t的55.99%; 然而,对热力消费及其碳排 放的相关研究成果较少,研究视角较为微观。刘飞(2012) 分析了沈阳市的城市供热能耗与碳排放[8],李沛峰等 (2012)、余雪等(2020)对国内某300MW热电联产机 组的能耗分布等开展研究[9,10]。常莎莎等(2016)基于 沈阳市72家供暖企业调研数据,核算供热企业的碳排放量 [11]; 目前,在核算热力消费的CO₂排放量时,主要参考 国家、北京市等文件或标准中[12-15]的热力排放因子0.11 tCO₂/GJ, 采用热力实物消耗量乘以其CO₂排放因子的缺省 值计算得到。但是, 热力排放因子在不同年份将随着热力 生产的碳排放效率与热力结构中天然地热、生产供热等比 重不同而变化;因此,很有必要估算2000-2019年热力消 费的CO₂排放因子,把握其演变趋势及其影响因素。

2. 方法与数据

2.1. 数据来源

2000年-2019年全国热力消费量合计、供热产出量、供热投入能源消费量(中间消费)与热力生产和供应的能源终端消费量来源于《中国能源统计年鉴》(2001-2020)的能源平衡表(实物量)、工业分行业终端能源消费量(实物量)。

2.2. 研究方法

2.2.1. 热力生产碳排放核算

热力生产和供应的 CO_2 排放核算包括两个部分: (1) 供热能源投入(中间消费)的排放。(2)热力生产和供应的能源终端消费的排放。能源消费的 CO_2 排放核算,主要基于分燃料品种的实物消耗量、低位热值(净发热值,用于能源单位的转换)、单位热值含碳量和氧化率计算得到。计算公式为(IPCC, 2006)[16]:

$$CE = \sum_{i=1}^{n} AD_i \times EF_i = \sum_{i=1}^{n} (FC_i \times NCV_i) \times (CC_i \times OF_i \times \frac{44}{12})$$
 (1)

式中:CE为能源消费的 CO_2 排放量(tCO_2), AD_i 为i种能源消费量的热量(即活动水平数据,热值单位GJ), EF_i 为i种能源的 CO_2 排放因子(tCO_2 /GJ); FC_i 为i种能源的实物消耗量(质量或体积单位,t或 10^4 m 3), NCV_i 为i种能源的平均低位发热量(质量或体积单位,GJ/t或GJ/ 10^4 m 3)。 CC_i 为i种能源的单位热值含碳量(又称潜在排放因子,tC/GJ), OF_i 为i种能源的碳氧化率(%),44/12为 CO_2 与C分子量之比。 NCV_i 、 CC_i 和 OF_i 取值为相关标准的缺省值(表1)。n为热力生产消费(供热投入、热力生产和供应终端消费)的22种相关化石能源。

能源名称	平均低位发热量NCV _i 、GJ/t或GJ/10 ⁴ m³	单位热值含碳量CCi、tC/TJ	碳氧化率 OF_i 、%	CO2排放因子EFi、tCO2/TJ
原煤	20.934	26.22	0.95	91.33
洗精煤	26.377	25.41	0.96	89.44
其他洗煤	8.374	25.41	0.96	89.44
煤矸石	8.374	25.80	0.90	85.14
焦炭	28.470	29.50	0.93	100.60
焦炉煤气	180.030	12.10	0.99	43.92
高炉煤气	37.680	70.80	0.99	257.00
转炉煤气	79.450	49.60	0.99	180.05
其他煤气	52.340	12.20	0.99	44.29
其他焦化产品	33.494	29.50	0.93	100.60
原油	41.868	20.10	0.98	72.23
汽油	43.124	18.90	0.98	67.91
煤油	43.124	19.60	0.98	70.43
柴油	42.705	20.20	0.98	72.59
燃料油	41.868	21.10	0.98	75.82
石脑油	43.907	20.00	0.98	71.87
石油焦	32.500	26.60	0.98	95.58
液化石油气	50.242	17.20	0.98	61.81
炼厂干气	46.055	18.20	0.98	65.40
其他石油制品	40.200	20.00	0.98	71.87
天然气	389.790	15.30	0.99	55.54

表1 化石能源的相关参数和缺省值

能源名称	平均低位发热量NCV _i 、GJ/t或GJ/10 ⁴ m ³	单位热值含碳量CCi、tC/TJ	碳氧化率OFi、%	CO ₂ 排放因子EF _i 、tCO ₂ /TJ
液化天然气	51.498	17.50	0.98	62.88

注:表中相关参数主要来源于《综合能耗计算通则GB/T2589-2020》(现行标准)、《省级温室气体清单编制指南(试行)》(国家发改委,2011)、《2006年IPCC国家温室气体清单指南》等。

2.2.2. 热力碳排放因子估算

假设某一年份生产的热力(供热)全部被当年消费(热力不可能被大量存储),则热力消费的CO₂排放量就相当于热力生产和供应的CO₂排放量。因此,将热力生产和供应的CO₂排放总量除以热力消费量合计,即可得到该年热力消费的CO₂排放因子。计算公式为:

$$EF_{heat} = \frac{CE_{input} + CE_{final}}{EP_{tec}}$$
 (2)

式中: EF_{heat} 为某年全国热力消费的 CO_2 排放因子(tCO_2 /GJ)。 CE_{input} 为供热能源投入(中间消费)的 CO_2 排放量, CE_{finat} 为热力生产和供应的能源终端消费 CO_2 排放

量。 EP_{tec} 为该年热力消费量合计(等于终端消费量与损失量之和)。

3. 实证分析

3.1. 热力消费碳排放因子的演变

2000年-2019年,全国热力生产和供应的能源消费的 CO_2 排放量(等于热力消费排放量)从1.98亿t增加到7.73亿t,热力消费量合计从14.61× 10^4 万百万千焦增加到 66.17×10^4 万百万千焦。热力消费 CO_2 排放量、热力消费量合计增速均十分明显,分别为290.15%和352.83%;总体上,热力消费 CO_2 排放因子呈现下降趋势,从0.136t CO_2 /GJ下降为0.117t CO_2 /GJ,降幅较为明显,下降了16.24%。

表2 2000-2019年中国热力消费的碳排放因子。

年份	热力生产和供应的碳排 放总量10 ⁴ tCO ₂	- 热力消费量合计10 ¹⁰ kJ	热力消费的碳排放因子 tCO2/GJ	供热产出量占热力消费 量合计的比重%	供热生产的碳排放效率 tCO ₂ /GJ
2000	19806.57	146134.76	0.136	100.00	0.126
2001	20205.67	153202.23	0.132	100.00	0.123
2002	20021.56	164185.68	0.122	100.00	0.113
2003	23972.78	177304.47	0.135	100.00	0.126
2004	24819.46	192582.85	0.129	100.00	0.124
2005	29045.43	228890.54	0.127	100.00	0.122
2006	30968.37	246808.80	0.125	100.00	0.122
2007	32177.92	258595.45	0.124	100.00	0.121
2008	31907.92	257757.40	0.124	100.00	0.119
2009	32605.28	266742.01	0.122	100.00	0.118
2010	41552.38	326285.43	0.127	91.27	0.134
2011	45318.35	353848.91	0.128	89.80	0.138
2012	54599.49	383721.84	0.142	88.52	0.157
2013	53310.51	413102.56	0.129	87.66	0.144
2014	54673.65	433440.34	0.126	86.34	0.144
2015	57250.73	461106.64	0.124	86.54	0.142
2016	61358.92	496544.52	0.124	86.70	0.141
2017	65644.97	530006.60	0.124	87.56	0.140
2018	72842.09	620543.22	0.117	84.51	0.138
2019	77274.42	661736.52	0.117	85.40	0.136

3.2. 热力消费碳排放因子演变的原因

全国热力消费 CO_2 排放因子的演变主要受以下因素的综合影响。

(1) 供热产出量的比重比重下降。供热产出量是热力生产企业投入各种能源(中间消费)产出并对外提供的热力(企业自用直接计入终端消费)。依据能源消费的统计原则,企业回收余热不计入消费量。因此,热力消费量合计除企业供热的产出量外,还包括利用地热资源(地下热水、地热蒸汽和温泉等)获得的热力。2010年以来,供热产出量占热力消费量合计的比重下降,表明热力消费结构中,天然地热的利用量增加(该部分热力碳排放核算仅涉及热力供应的终端消费排放,一般排放量很小),企业供热的比重下降。这一结

果是导致热力消费 CO_2 排放因子呈现下降趋势的主要影响因素。

- (2) 供热产出的碳排放效率变化。供热产出的碳排放效率=供热能源消费的碳排放量/供热产出量。总体上,2000年-2019年供热产出的碳排放效率变化呈现下降趋势。产出每吉焦(GJ)热力的能源消耗CO2碳排放量从0.126t下降为0.136t。2010年以来,大多数年份的碳排放效率下降更为明显。
- (3) 纳入消费统计能源种类影响。从《中国能源统计年鉴》等数据来看,2010年起,国家对能源消费的统计比以前年份更加全面。2000年-2009年,热力消费量合计和供热产出量基本相等。2010年-2019年,热力消费量合计明显高于供热产出量,地热资源利用被纳入统计范围;2010年-2019年,供热能源投入(中间消费)、热力生产和供应的

能源终端消费统计的能源种类比2010年以前更全面。这些因素是导致供热产出量占热力消费量合计比重、供热生产的碳排放效率等在2010年前后产生较大差异的原因,并对热力消费CO₂排放因子的估算产生影响。

4. 结论

2000年-2019年,受供热产出的碳排放效率变化、热力消费结构中天然地热比重增加(供热产出比重下降)等因素的综合影响,全国热力消费的CO₂排放因子总体上呈现出下降趋势,从0.136tCO₂/GJ下降为0.117tCO₂/GJ,下降了16.24%。

5. 讨论

目前,国家、北京市等文件或标准中采用的热力排放 因子为0.110tCO₂/GJ(最早相关文件为2013年),与本文 2013年及其以后年份的估算结果相比较,结果稍偏高。与 2018年、2019年估算结果相差很小,仅相差0.007。原因 主要在于:2020年以前在热力平均排放因子的核算过程中, 能源平均低位发热量采用原来的标准《综合能耗计算通则 GB/T2589-2008》,而本次估算采用现行的标准《综合能 耗计算通则GB/T2589-2020》。现行标准(新标准)的能 源平均低位发热量均比原来标准高,导致估算结果偏高。

致谢

本文为国家自然科学基金项目《区域碳足迹时空格局及其影响机制的图谱研究-以滇中地区为例》(41661117)的阶段性成果之一。

参考文献

- [1] 田华征,马丽.中国工业碳排放强度变化的结构因素解析[J]. 自然资源学报,2020,35(3):639-653。
- [2] 王凯,唐小惠,甘畅,等.中国服务业碳排放强度时空格局及影响因素[J].中国人口·资源与环境,2021,31(8):23-31。
- [3] 刘汉初,樊杰,曾瑜皙,等.中国高耗能产业碳排放强度的时 空 差 异 及 其 影 响 因 素 [J]. 生 态 学 报 , 2019 , 39 (22):8357-8369。

- [4] 李慧敏,杨旭,吴相利,等.时空视角下能源密集型产业结构演变的碳排放效应[J].环境科学学报,2021,41 (5):2018-2028。
- [5] 李雪梅,张庆.天津市能源消费碳排放影响因素及其情景预测[J].干旱区研究,2019,36(4):997-1004。
- [6] 杨迪,杨旭,吴相利,等.东北地区能源消费碳排放时空演 变特征及其驱动机制[J].环境科学学报,2018,38 (11):4554-4565。
- [7] 国家统计局能源司.能源统计工作手册[M].北京:中国统计出版社,2010。
- [8] 刘飞.城市供热系统能耗及碳排放研究[D].东北大学, 2012。
- [9] 李沛峰,杨勇平,戈志华,等.300MW热电联产供热系统分析与能耗计算[J].中国电机工程学报,2012,32(23):15-20。
- [10] 余雪, 谭忠富. 燃煤电厂供热能耗的数据分析研究[J]. 数学的 实践与认识, 2020, 50 (23):119-128。
- [11] 常莎莎, 郗凤明, 毕垒, 等.供热行业碳排放基准线研究-以沈阳市为例[J].气候变化研究进展,2016,12(6):554-560。
- [12] 国家发展和改革委员会办公厅。关于印发首批10个行业企业温室气体排放核算方法与报告指南(试行)的通知(发改办气候(2013)2526号)[A/OL]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201311/t20131101_963960.html?code=&state=123.
- [13] 国家发展和改革委员会办公厅.关于印发第三批10个行业企业温室气体核算方法与报告指南(试行)的通知(发改办 气 候 (2015) 1722 号) [A/OL].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201511/t20151 111_963496.html?code=&state=123.
- [14] 国家生态环境部办公厅.关于做好2018年度碳排放报告与核查及排放监测计划制定工作的通知(环办气候司函(2019)71 号) [A/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201901/t20190124 690807.html.
- [15] 北京市生态环境局.北京市碳排放单位二氧化碳排放与核 算 系 列 地 方 标 准 正 式 发 布 [A/OL]. (2021-01-04) http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqh bh/.
- [16] IPCC National Greenhouse Gas Inventories Programme Technical Support Unit. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. IPCC, 2006.