

Software Engineering
2023; 10(1): 1-5
http://www.sciencepublishinggroup.com/j/se
doi: 10.11648/j.se.20231001.11
ISSN: 2376-8029 (Print); ISSN: 2376-8037 (Online)

Survey Paper on Development of ROS for Fault Detection
of Underwater Cables

Vijay Rathod, Haritima Kushwaha, Teheseen Shaikh, Vaishnavi Joshi, Shubham Awantkar

Department of Computer Science and Engineering, G. H Raisoni Institute of Engineering and Technology Pune, Pune, India

Email address:

To cite this article:
Vijay Rathod, Haritima Kushwaha, Teheseen Shaikh, Vaishnavi Joshi, Shubham Awantkar. Survey Paper on Development of ROS for Fault

Detection of Underwater Cables. Software Engineering. Vol. 10, No. 1, 2023, pp. 1-5. doi: 10.11648/j.se.20231001.11

Received: January 26, 2023; Accepted: March 17, 2023; Published: May 18, 2023

Abstract: An introduction to ROS, an open source robot operating system, is given in this paper. In terms of process
management and scheduling, ROS is not an operating system. This study explains how Robotic Operating System (ROS) can
be used to control items (such as vehicles) remotely and cautiously without human intervention at the location. Instead, it gives
heterogeneous computing clusters a structured communication layer on top of the host operating system. This document gives
a quick explanation of how ROS fits into the current robot software architecture and how we may utilize it for AUVs
(Automated under water vehicle). One of the media that connects the entire world to the internet is optical cable, which is
typically installed underground or under water. As a result, it is challenging to inspect them thoroughly because it costs more
to do so. To address this issue, we are presenting a solution that involves developing a robotic operating system that would
assist in checking the underwater/underground cables. To put this into practice, we have been utilizing VMWare Workstation
to virtually install Ubuntu OS, where we will be installing ROS packages, with the ROS-Gazebo toolbox serving as one of the
primary tools. We are testing the implemented software with the standard inputs. We are using light radiation as the primary
factor to assess the condition of the optical cable.

Keywords: Ubuntu, Gazebo, ROS, Simulations

1. Introduction

Writing software for robots is challenging, especially as
robotics' scale and scope continue to expand. Because
different robot types can have highly varied hardware, code
reuse is not simple. Additionally, given that the required
code must span a wide range of levels, from driver-level
software to perception to abstract thought, etc., its bulk can
be overwhelming. Large-scale software integration
initiatives must be supported by robotic software
architectures as well because the required competence is
well beyond the scope of a single researcher. Many robotics
researchers, including our own, have developed numerous
frameworks to manage complexity and promote quick
development of experimental software in the past to solve
these issues. Did. Industry and academia [1]. Each of these
frameworks was created with a specific objective in mind,
possibly to correct perceived flaws in existing frameworks
or to concentrate on elements judged most crucial
throughout the design process. was planned. ROS operates

as a publish subscribe service to distribute data among
nodes in a system [2]. The ROS framework, which is
detailed in this article, will be used by AUVs to find
problems with underwater cables.

2. Underwater Cable and Fault Detection

Early AC power systems' "inseparable binomial" was long
power lines and catenary lines [3]. A fault is defined as a
total loss of synchronization or failure of the electrical
network, but it does not rule out environmental threats like
electrocution or potentially disastrous fire hazards. This
demonstrates the common notion at the time that overhead
cables served as the primary means of signal transmission.
For DC underwater link applications, insulated high voltage
(HV) and extra high voltage (EHV) cables were employed.
Greater environmental consciousness, growing interference
with overhead power lines, and increased reliance on

2 Vijay Rathod et al.: Survey Paper on Development of ROS for Fault Detection of Underwater Cables

premium extruded insulation all contributed to this. In the
electrical sector of several nations, grid operators are
thinking of switching out these overhead wires and cables
with underground cables or introducing hybrid systems (i.e.,
replacing overhead and underground cables) [4]. There are
numerous factors, including price. Some of the advantages of
Montage are listed below. 1. Considerably lower possibility
of being damaged by environmental risks like lightning, wind,
and ice, to mention a few. Second, underground cable
networks narrow the spectrum of electromagnetic fields that
are released (EMF). Underground cables are installed,
although there are fewer components. When additional
components are positioned adjacent to overhead lines for
protection, maintenance, or repair, this is reversed. 4.
Underground cable systems remove the possibility of
injuring wildlife and in-flight aircraft. 5. Unauthorized
contact, sabotage, and conductor theft less than 6. Large trees
can be planted and grown in green countries using the
Underground Cable System. In some circumstances, the
advantages of phasing in an underground system outweigh
the disadvantages. The difficulty of locating a problem in the
event of one would be one of the most glaring and practical
disadvantages of the subsurface system concept. Many low
and medium voltage distribution lines throughout the world
have been equipped with underground cables for many years.
Because they can survive weather, torrential rain, storms,
snow, and pollutants, high voltage underground cables are
being utilized more and more. Despite advancements in cable
manufacturing techniques, cables can still fail during testing
and operation for a variety of reasons. If properly placed and
maintained, a good cable can survive for roughly 30 years.
However, incorrect installation or malfunction can swiftly
ruin cables, and Excavation and embankment work during
construction can harm later-arriving third parties.

3. Nomenclature

Nodes, messages, subjects, and services are the
fundamental principles for implementing ROS, where nodes
are processes that carry out calculations [5]. ROS is intended
to be modular in minuscule steps. Typically, a system has a
large number of nodes. The terms "node" and "software
module" are synonymous in this context. The term "node" is
used in relation to the runtime visualization of ROS-based
systems. When numerous nodes are active, it is important to
graph peer- to-peer relationships. Both peer nodes and graph
nodes are processes. using a call-based peer-to-peer
connection. Nodes exchange messages with one another to
communicate. A strongly typed data structure is a message.
There is support for arrays of primitive types and constants,
as well as the common primitive types (integers, floating-
point numbers, Booleans, etc.). Messages can be composed
of arrays of other messages and other messages themselves,
nested to arbitrary depth. A node posts a message to a certain
subject, which is a short string like "odometry" or "map," in
order to disseminate a message. Nodes subscribe to a subject
when they are interested in a specific form of data. A single

node may publish to and/or subscribe to multiple topics
concurrently, and there may be multiple concurrent
publishers and subscribers to a single topic. Most of the time,
publishers and subscribers are completely unaware of one
another.

Figure 1. Structure of voice recognition interface and dialogue system.

Through pipelines, communication is at its most basic.
Graphs, on the other hand, are typically significantly more

intricate, frequently containing cycles and one-to-many or
many-to-many links [11]. Although the topic-based publish-
subscribe model provides a flexible paradigm for
communication, its "broadcast" routing technique does not
work well for synchronous transactions even though it may
make some nodes' designs simpler. This is referred to as a
service in ROS. A pair of highly typed messages, one for
requests and one for responses, along with a string name are
used to identify a service. This is comparable to a web
service with well-defined types of request and response
documents that is defined by a URI. Notably, only one node
can promote a service with a given name, unlike topics.

4. ROS Framework Design

The ROS Robot Operating System is the primary software
framework used in this robot. It is a framework composed of
several programmers and libraries that are integrated with
one another, greatly reducing the complexity of programming.
The ROS is utilized in this AUV to facilitate communication
between all of the applications, from the detection software
to the PPM output programmer produced by the Arduino [12].
There are 4 nodes and 4 subjects with various functions in
this ROS system.

Figure 2. Basic structure of ROS System.

The Deteksi-node is the first node. A publisher for object

 Software Engineering 2023; 10(1): 1-5 3

detection is present in this node, and it publishes
information to the Status node via the Deteksi outcome
topic. The Status node comes next. The following nodes'
publish and subscribe programmes are located on this node
and are used to read, combine, and publish data for those
nodes: This node subscribes to data from the SwitchMode
subject from the Arduino node and the ResultDeteksi topic
from the Deteksi node. This node's programming algorithm
is: The node emits data in the form of integers retrieved
from the Detect node if the switch points to 1. The node
will output data in integer format if the switch value is 0. In
this instance, the author set the node to emit 1000. so that
the following node may compare and analyses the data with
ease later. The Status node's programming algorithm is
shown in the flowchart.

Figure 3. Status Node’s programming algorithm.

The /Direction node is the following node. A programmer
for simplifying and determining the robot's direction of
motion is contained in this node. The /Mode topic from the
/Status node before this one is subscribed to by this node.
The programmer algorithm in the /Direction node is shown
below.

Figure 4. Direction Node’s programming algorithm.

5. Proposed Methodology

Table 1. Pseudo Code.

Task Pseudo code

Initializing ROS Node

int main (int argc, char **argv)
{
ros::init(argc, argv, "name_of_node")
.....................
}

Printing Messages in a ROS Node

ROS_INFO (string_msg,args): Logging the information of node
ROS_WARN (string_msg,args): Logging warning of the node
ROS_DEBUG (string_msg,args): Logging debug messages
ROS_ERROR (string_msg,args): Logging error messages
ROS_FATAL (string_msg,args): Logging Fatal messages

Creating a Node Handle ros::NodeHandle. ros::NodeHandle nh;

Publishing a Topic in ROS Node
ros::Publisher publisher_object = node_handle.advertise<ROS message type >("topic_name",1000)
publisher_object.publish (message)

Callback Function in ROS Node

Void callback_name (const ros_message_const_pointer &pointer)
{
// Access data pointer->data
}

4 Vijay Rathod et al.: Survey Paper on Development of ROS for Fault Detection of Underwater Cables

The AUV used in the earlier research is built to be able to
dive dynamically while autonomously locating and following
underwater cables [10]. While doing this study, a virtual
computer running Ubuntu was using a robotic operating
system. The orders that cause the stimulated robot (Turtle bot)
to move on the ROS-Gazebo toolbox will be inputs, and the
CMD (Command line) Interface will be shown as an output.
Our presumptive vehicle, which is the AUV, will be the
stimulated robot (Turtle bot) in the Gazebo toolkit. It will be
able to command line control that stimulated robot (Turtle
bot), and as a result, the output/movements of that robot will
be visible (assumed AUV). We may view the presumed
AUV's readings and look for cable issues using the command
line. Additionally, the robot utilised in this study is distinct
from the robots used in earlier investigations, which use
AUVs (Turtle bot). To offer input to ROS, the Gazebo
simulator simulates robot hardware in software [7]. A low-
cost, open-source robot kit called TurtleBot is available. The
same duties can be carried out by the TurtleBot robot
simulation without endangering the actual robot. Learning
ROS and testing robot algorithms are done using the
TurtleBot robot simulation.

6. Literature Survey

Middleware rt Robotics Technology Middleware (RT-
middleware) is a common platform standard for robotics that
is based on distributed object technology [6]. RTmiddleware
assists in the creation of various networked robotic systems
by the incorporation of various network-enabled robotic parts
known as RT-Components [8]. The RT-component
specification standard is discussed and decided by the Object
Management Group. 2. AUV The performance of the object
detection system utilising the OpenCV library is good under
ideal conditions, with a light intensity of greater than 25 lux.
The AUV cannot track in a straight line of 2 metres in less
than 25 lux of light. The detection mechanism operates most
effectively at speeds of 0.27 to 0.42 m/s. The vertical motion
control system and speed control are less stable as a result of
the absence of PID control. [9] The AUV can track on a
straight and wavy course of 2 metres in bright light at 493 lux,
low light at 107 lux, and dark light at 25 lux thanks to an
LED beam with a light intensity of 773 lux. The scoping
experiment's three straight and curved track trials had a
success rate of 75%.

7. Software Requirements

UBUNTU: Ubuntu is a Linux distribution based on Debian
that uses mostly free and open-source software. The three
official editions of Ubuntu are Core for robotics and Internet
of Things devices, Server, and Desktop.

TOOLBOX FOR ROS-GAZEBO: The total toolbox usage
is organised and streamlined using a Robotic Operation
System (ROS) manager node. A plugin replicates the internal
motor dynamics and implements the specific actuator's

particular compliance properties. The toolkit can be used to
design different compliant joint structures to undertake
precise and accurate simulations of ASRs, including those in
which they interact with the environment.

RVIZ: With the help of the three-dimensional visualizer
rviz, robots, the settings in which they operate, and sensor
data can all be observed. It has several different
visualisations and plugins, making it a very flexible tool.

ROSBAG: To record and playback ROS message data,
rosbag is a command-line tool. In order to capture and log
ROS communications, rosbag uses a file format called bags
to listen to topics and record messages as they come in [14].
Since playing messages back from a bag is essentially equal
to having the original nodes that produced the data in the
ROS computation graph, bags are a useful tool for storing
data that will be utilised in future development. While rqt bag
includes a graphical user interface, rosbag is a command-
line-only programme.

CATKIN: Rosbuild has been replaced with catkin as the
ROS build mechanism as of ROS Groovy. Catkin is cross-
platform, open-source, and language-neutral, much like
CMake. ROSBASH: The rosbash package contains a number
of tools that enhance the functionality of the bash shell.
These tools, which comprise rosls, roscd, and roscp, mimic
the actions of ls, cd, and cp, respectively. When utilising the
ROS versions of these utilities, the file path where the
package is located can be changed to ros package names.
Additionally, the package contains rosrun, which runs
executables in ROS packages, and rosed, which edits a given
file using the selected default text editor. Most ROS tools
now also feature tab completion. The same functionalities are
supported by rosbash to a lesser extent for zsh and tcsh.

ROSLAUNCH: Several ROS nodes can be started both
locally and remotely, and the ROS parameter server's
parameters can be changed using a tool called roslaunch.
Using roslaunch configuration files, which are produced
using XML, it is simple to automate a complicated startup
and configuration operation into a single command.
Roslaunch scripts can launch nodes on specific machines,
incorporate other roslaunch scripts, and even restart failed
operations [13].

8. Conclusion

We have demonstrated the use of a robotic operating
system to control objects carefully and remotely without
requiring human assistance. The ROS can be used once more.
Communication is straightforward because ROS can
understand any language, including C++, Python, and many
others. Ros enables developers to turn on their robot remote
controls. This system will aid in underwater communication
and be helpful in locating underwater cable faults.

Acknowledgements

We are quite appreciative to our professors for allowing us

 Software Engineering 2023; 10(1): 1-5 5

to work on this subject as well. Our team would like to
extend a special thank you to Prof. Vijay Rathod, who has
been assisting us with this project since the very beginning.
We also want to express our gratitude to our college for
giving us the top resources we needed for this project. All in
all, we would want to express our gratitude to everyone who
contributed to this initiative.

References

[1] Vol. 11, No. 3, Juli 2022 ISSN 0216 – 0544 e-ISSN 2301–
6914 119 Development Of Autonomous Underwater Vehicle
(Auv) Based On Robotic Operating System For Following
Underwater Cable.

[2] N. DeMarinis, S. Tellex, V. P. Kemerlis, G. Konidaris and R.
Fonseca, "Scanning the Internet for ROS: A View of Security
in Robotics Research," 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 8514-8521, doi:
10.1109/ICRA.2019.8794451.

[3] V. Dupourque, "A robot operating system," Proceedings. 1984
IEEE International Conference on Robotics and Automation,
1984, pp. 342-348, doi: 10.1109/ROBOT.1984.1087185.

[4] M. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera and N. O.
Salscheider, "Robot operating system: A modular software
framework for automated driving," 2016 IEEE 19th
International Conference on Intelligent Transportation
Systems (ITSC), 2016, pp. 1564-1570, doi:
10.1109/ITSC.2016.7795766.

[5] Breiling, B. Dieber and P. Schartner, "Secure communication
for the robot operating system," 2017 Annual IEEE
International Systems Conference (SysCon), 2017, pp. 1-6,
doi: 10.1109/SYSCON.2017.7934755.

[6] Kehoe, S. Patil, P. Abbeel and K. Goldberg, "A Survey of
Research on Cloud Robotics and Automation," in IEEE
Transactions on Automation Science and Engineering, vol. 12, no.
2, pp. 398-409, April 2015, doi: 10.1109/TASE.2014.2376492.

[7] Ramos, Fernando, and Enrique Espinosa. “A self-learning
environment based on the PBL approach: An application to
the learning process in the field of robotics and manufacturing
systems.” International Journal of Engineering Education,
19.5, pp. 754-758, 2003.

[8] J. C. Kinsey, D. R. Yoerger, M. V. Jakuba, R. Camilli, C. R.
Fisher and C. R. German, "Assessing the Deepwater Horizon
oil spill with the sentry autonomous underwater vehicle,"
2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011, pp. 261-267, doi:
10.1109/IROS.2011.6095008.

[9] P. J. B. Sánchez, M. Papaelias and F. P. G. Márquez,
"Autonomous underwater vehicles: Instrumentation and
measurements," in IEEE Instrumentation & Measurement
Magazine, vol. 23, no. 2, pp. 105-114, April 2020, doi:
10.1109/MIM.2020.9062680.

[10] M. Bradley, M. D. Feezor, H. Singh and F. Yates Sorrell,
"Power systems for autonomous underwater vehicles," in
IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 526-
538, Oct. 2001, doi: 10.1109/48.972089.

[11] Yousuf, A., & Lehman, W., & Mustafa, M. A., & Hayder, M.
M. (2015, June), Introducing Kinematics with Robot
Operating System (ROS) Paper presented at 2015 ASEE
Annual Conference & Exposition, Seattle, Washington.

[12] Lessard, R. A. (1999, June), Embedded Systems Course
Focuses on Autonomous Robot Applications Paper presented
at 1999 Annual Conference, Charlotte, North Carolina.

[13] Michalson, W., & Looft, F. (2010, June), Designing Robotic
Systems: Preparation for An Interdisciplinary Capstone
Experience Paper presented at 2010 Annual Conference &
Exposition, Louisville, Kentucky.

[14] Barut, S., M. Boneberger, P. Mohammadi and J. J. Steil.
Benchmarking Real-Time Capabilities of ROS 2 and
OROCOS for Robotics Applications. in 2021 IEEE
International Conference on Robotics and Automation (ICRA).
2021. IEEE.

