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Abstract: In computer arithmetic, one of the most important things to consider in hardware design is the ability of the system 

to detect and display numbers with their signs. This when properly managed will reduce errors and ensure hardware reliability. 

But interestingly, detecting and knowing the sign of a residue number during arithmetic operation is very difficult. Magnitude 

Comparison, Scaling and Number conversions are some of the other difficult operations in Residue Number System (RNS). 

Unlike the weighted number system, it is even extremely difficult to determine the sign of a number in an RNS architecture 

thereby hampering the full implementation RNS in general purpose computing. In this paper, an efficient sign detection 

algorithm for detecting the sign of a number in an RNS architecture is presented. In formulating the algorithms, X maximum, 

(Xmax) is computed from the Dynamic Range, M=∏
k
i=1(mi). Modular Computation Technique is employed as a converter to 

compute X from the residues (r1, r2, r3) with respect to a given moduli set, say �= {�1, �2 …, �n}. X is positive if X-Xmax<0 

otherwise X is negative and the actual value is this case is computed as X-M. The moduli set {2
n
-1, 2

n
, 2

n
+1, 2

(n+1)
-1, 2

2n
-5} is 

used for the system design implementation and for numerical illustrations. It is observed that the scheme effectively detects the 

sign of RNS numbers and theoretical analysis showed that simple hardware resources and low-power modular adders are used in 

the design. It is also observed that the scheme when implemented practically can help project RNS to be used in general purpose 

computing. 

Keywords: RNS - Residue Number System, CRT - Chinese Remainder Theorem, MRC – Mixed Radix Conversion,  

Sign Detection 

 

1. Introduction 

In recent times, there has been much growing interest in the 

study of Residue Number System (RNS) in the field of parallel 

computing. This can be significantly traced to the great deal of 

computing that takes place in embedded processors such as 

those found in mobile devices and signal processing which 

normally require high speed computations with low-power 

consumption. The absence of carry-propagation in RNS 

results in parallel computing that guarantees fault-tolerance, 

high-speed and low-power arithmetic. Today, computer chips 

have become so dense that full testing is no longer possible 

and therefore has made fault-tolerance and the general area of 

computational integrity essential. In Digital Computer 

Arithmetic, this kind of number representation introduces 

parallelism Paharmi [6], which is very useful in applications 

like cryptography Antao and Sousa [3] and Digital Signal 

Processing Soderstand et al., [7]. Nonetheless, while 

operations such as addition, subtraction and multiplication 

may be carried out quickly and directly in parallel on the 

residues, additional arithmetic operations like reverse 

conversion, scaling, magnitude comparison and sign and 

overflow detection are challenging to implement in RNS 

Paharmi [6]. Traditionally, investigations to detect the sign 

and compare the magnitude of numbers largely relied on RNS 

reverse conversion techniques such as the Chinese Remainder 

Theorem (CRT) and the Mixed Radix Conversion (MRC) [9]. 

In this approach, numbers are translated from RNS into a 

positional number representation scheme where the 

comparison operation may be computed effectively. 
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1.1. Fundamentals of RNS 

RNS is defined by a set S, of N integers that are pair-wise 

relatively prime. That is �= {�1, �2, …, �n} where the 

greatest common divisor of any pair ���, ��� is 1. That is 

gcd���, ��� = 1 for �,=1,..., � and �≠�. In this case, every 

integer � in [0,−1], can be uniquely represented with an 

N-tuple where, � = ∏ ������  is the dynamic range. For any 

integer X, we have X→ (�1,2,…,��) and �� = |�|��= (� mod 

��); for �=1 �� �. The set S and the number �� are called the 

moduli set and residue of X modulo �� respectively. 

1.2. Application of RNS 

One major breakthrough in the study of RNS is the 

discovery of its ability to carry out high speed computation as 

well as perform parallel arithmetic and processing. These 

attributes have led to its adoption in Digital Signal Processing 

applications such as Digital Filtering, Discrete Cosine 

Transform (DCT), Discrete Fourier Transform (DFT), Fast 

Fourier Transform (FFT), Digital Communication and Error 

Detection and Correction. 

1.3. Challenges of RNS 

Generally, architectures built on RNS have great advantage 

in terms of speed, fault-tolerance and power management. 

This therefore has made it very suitable to implement 

RNS-based processors in different applications. However, in 

spite of these great advantages, RNS processors do not find 

wide range usage in practical computing due to some limiting 

factors that make the process very difficult. Some of these 

factors that have resulted in open research are: Conversion, 

Magnitude Comparison, Sign Detection and Overflow 

Detection among others. 

1.4. Domain of the Research 

In this research, we propose an efficient sign-detection-scheme 

by employing the modular computation technique as a converter 

in the field of Residue Number System. 

2. Literature Review 

In RNS, it is difficult to identify a negative number and many 

researchers have looked into sign detecting algorithms as an 

alternative. In Ulman [10], a sign detection algorithm for a 

certain class of RNS was proposed which uses a sum of modulo 

2 of digits in the related Mixed Radix System (MRS). Vu [11] 

proposed a sign detection strategy based on fractional 

representation for reducing the total modulo M in the 

conversion formula to a sum modulo 2. Xu et al., Al-Radadi [2], 

presented a sign identification technique based on the new 

Chinese Remainder Theorem (CRT) II. The modulo operations 

in the sign detection algorithm have a large size of modulo M. 

Again, another sign detection approach by Akkal and Siy [1] 

uses the nth Mixed Radix Digit (MRD) in Mixed-Radix 

Conversion (MRC). Hiasat [4], proposed a residue-based sign 

detection scheme using carry-save and carry- generation 

circuits on a four-moduli set to enhance the performance of an 

arithmetic unit. This reduced the time delay by a large margin 

and performance analysis with a similar sign detector put the 

proposed converter ahead in time, area and power consumption. 

VLSI tools were used to experiment the scheme to confirm its 

gain. In all, the research promised to be relevant in applications 

requiring high speed, such as communication systems. Akkal 

and Siy [1] presented a generic sign detection algorithm based 

on the Mixed Radix Conversion algorithm, MRC-II. The 

algorithm uses only one step comparison for sign detection. The 

conversion algorithm works by eliminating the need for table 

lookup normally used in MRC hardware implementation and 

hence does not need ROM as in the case of other algorithms. A 

fast RNS sign detection algorithm for the restricted moduli set 

{2�-1, 2�	+1, 2�� + 1, 2�!�} has also been discussed by Xu 

et al., [12]. Their proposed algorithm allows for parallel 

implementation and consists exclusively of modulo 2n 

additions. The implementation of the algorithm has been done 

using one carry save adder, one comparator and one prefix 

adder. The experimental results showed that the proposed 

circuit unit had gained in area, delay and power by 63.8%, 

44.9%, and 67.6% respectively when compared with a unit 

based on one of the best sign detection algorithms. In a paper 

authored by Antao and Sousa [3], a new approach was proposed 

for sign detection and number comparison using a revised 

version of the Mixed Radix Conversion (MRC) for an 

augmented 3-moduli sets {2� +1, 2� −1, 2�!�}. Almost all 

their computations were directly performed on the moduli 

channels, allowing for easy use in any RNS processor. The 

paper further presented an efficient, unified and very large-scale 

integration architecture based on the proposed scheme and this 

was implemented using 65 nm CMOS technologies which 

showed that the proposed architecture was more efficient than 

some related state of the art architecture. Sousa and Martins [8] 

designed an efficient RNS comparators for large dynamic range 

and implemented it on the {2
n
 + 1, 2

n
 – 1, 2

n+x
} moduli set. The 

design technique followed a two-step approach. Firstly, the 

MRC was used to optimize the sign identification, by focusing 

on the extraction of the sign bit and on the parallelism of the 

hardware structure. The sign identification module was then 

used to implement the number comparison operation. The 

proposed comparator demonstrated to be a very attractive 

RNS-Based hardware architecture for signal processing 

applications. Hiasat [5] introduced a new architecture for sign 

detection for the moduli set #2�!$, 2� − 1, 2� + 1, }, where n 

and p are positive integers such that p < n. The proposed 

decoder was seen to be flexible and efficient since it could 

easily deal with large dynamic range starting from 3n bits up to 

3n + p bits dynamic range. For cases where p > 1, increasing the 

dynamic range by 1 bit (i.e., doubling the dynamic range) 

requires only one half-adder and no additional delay. When 

compared with the most competitive published work, the new 

sign detector exhibited a better performance in terms of area, 

delay and power that ranges from 4.7 percent up to 44.8 percent. 

Younes and Steffan [13] presented two designs for overflow 

and sign detection and correction in unsigned and signed RNS 

based on the moduli set {2n – 1, 2n, 2n + 1}. This set has an 

even dynamic range. Moreover, these designs can be 

considered as universal, since they can be used with any system 

that has an even dynamic range by applying a small 
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modification on the evaluation unit. Both designs are faster and 

require less hardware components than those based on 

comparators. 

3. Methodology 

3.1. Proposed Algorithm 

In this section, we propose an efficient algorithm to 

determine the sign of an RNS number by dividing the 

procedure into two parts. In part one, we compute Xmax and 

then in part two, we compute the decimal equivalent, X of a 

given residue number, say X=&'�, '�, … , '�) with respect to the 

moduli set � = #��, ��, … ,��}  using the modular 

computation technique as a converter. We then perform the 

necessary comparisons in order to determine the sign of the 

RNS number. The sign detection process is illustrated as 

follows: 

Compute ��*+ =	,� − 1 

where � = ∏ ������  

Compute X using the modular computation method as a 

reverse converter for a given residue number, X=&'�, '�, … , '�) 
with respect to the moduli set � = #��, ��, … ,��} 

Decision Whether Sign is Positive OR Negative 

If the decimal number, X computed is less than ��*+  then 

it is positive. 

However, If the decimal number, X computed is greater 

than ��*+  then, we determine β=X-M. In this case β will be 

negative. 

3.2. Modular Computation Technique 

The Modular Computation Method is a fast but low power 

dispense Residue-to-binary conversion technique that 

employs modular computations in the reverse conversion 

process. Given a relatively prime moduli set #��, ��, … ,��} 
and its corresponding residues&'�, '�, … , '�), we define the 

first jump ��, which is equal to the first residue '�,	and -� as 

its first location given by: 

1
st 

Jump: J1 = r1 

1
st
 location L1 = |X - J1|= 

./
//
//
0 |r� − r�|23 = 0|r� − r�|25 = '��...|r� − r�|27 = '��89

99
99
:
 

2
nd 

Jump: J2 = m�K2 and <'�� − =�<25 = 0 <'�� −m�>�<25 = 0	 ⇒K2 = @ A5323@25 

2
nd

 location L2 = |X - J1|= 

./
//
/0
|r� − r�|23 = 0|r� − r�|25 = 0...|r� − r�|27 = '��8

99
99
:
 

We continue finding the next jump and location and stop when BCD-�EF���B = 0 

Such that n
th

 location Ln = |X – Jn|= 

./
//
/0
|r� − r�|23 = 0|r� − r�|25 = 0...|r� − r�|27 = 08

99
99
:
 

Finally, the corresponding decimal number X is the result of summing of the =�GH, thus � = =� + =� +⋯+ =�  

3.3. Proposed Converter 

The proposed algorithm using cyclic jump method is presented in details below: 

Given a 5-moduli set � = #m�, m�, mJ, mK, mL} such that #r�, r�, rJ, rK, rL} are the residues of the decimal number X, then by 

the cyclic jump approach we have; 

1
st 

Jump: J1 = r1 

1
st
 location L1 = |X - J1|= 

./
//
/0
|r� − r�|23 = 0|r� − r�|25 = '��|rJ − r�|2M = '�J|rK − r�|2N = '�K|rL − r�|2O = '�L8

99
99
:
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2
nd 

Jump: J2 = m�K2 and <'�� − =�<25 = 0 <'�� −m�>�<25 = 0 ⇒K2 = P A5�23P25  

2
nSd 

location L2 = |X – J2|= 

./
//
//
/0
|0 − &m�>�)|23 = 0<'�� − &m�>�)<25	 = 0	<'�J − &m�>�)<2M = '��J<'�K − &m�>�)<2N = '��K<'�L − &m�>�)<2O = '��L 89

99
99
9:
 

3
rd

 Jump: J3 = m�m�K3 and <'��J − =J<2M = 0 <'��J −m�m�>J<2M = 0 ⇒ >J =	 @ A��M2325@2M 

3
rd 

Location L3 = |X – J3|= 

./
//
//
0 |0 − &m�m�>J)|23 = 0|0	 − &m�m�>J)|25	 = 0	<'��J − &m�m�>J)<2M = 0<'��K − &m�m�>J)<2N = '���K<'��L − &m�m�>J)<2O = '���L8

99
99
9:
 

4
th

 Jump: J3 =m�m�mJK4 and <'���K − =K<2N = 0 ⇒ >K =	 @ A���N
23252M@2N 

4
th

 Location L4 = |X – J4|= 

./
//
//
0 |0 − &m�m�mJ>K)|23 = 0|0	 − &m�m�mJ>K)|25	 = 0	|0	 − &m�m�mJ>K)|2M = 0<'���K − &m�m�mJ>K)<2N = 0<'���L − &m�m�mJ>K)<2O = '�QL89

99
99
:
 

5
th

 Jump: J5 = m�m�mJmKK5 and <'�QL − =L<2O = 0 ⇒ >L =	 @ A�RO
23252M2N@2O 

5
th

 Location L5 = |X – J5| = 

./
//
/0
|0 − &m�m�mJmK>L)|23 = 0|0	 − &m�m�mJmK>L)|25	 = 0	|0	 − &m�m�mJmK>L)|2M = 0|0	 − &m�m�mJmK>L)|2N = 0|0	 − &m�m�mJmK>L)|2O = 08

99
99
:
 

At this point &	'Q�, 'Q�, 'QJ, 'QK, 'QL) = &0, 0, 0, 0, 0) 
Finally, the corresponding decimal number X is the result of summing of the =�GH, thus � = =� + =� + =J + =K + =L 

4. Results and Discussions 

4.1. Implementation of the Algorithm on the Moduli Set #ST − U, ST, ST + U, ST!U − U, SST − V} 
Given a 5-moduli set � = #2� − 1, 2� , 2� + 1, 2�!� − 1, 2�� − 5}  where �� = 2� − 1,�� = 2�, �J = 2� + 1,�K =2�!� − 1,�L = 2�� − 5 such that (r1, r2, r3, r4, r5) are the residues of the decimal number X. 

1
st 

Jump: J1 = r1 

1
st
 location L1 = |X - J1|= 

./
//
/0
|r� − r�|�7X� = 0|r� − r�|�7 = '��|rJ − r�|�7!� = '�J|rK − r�|�7Y3X� = '�K|rL − r�|�57XL = '�L 89

99
9:
 

2
nd 

Jump: J2 = (2� − 1)K2 and <'�� − =�<�7Y3 = 0 <'�� − &2� − 1)>�<�7X� = 0 ⇒K2 = @ A53�7X�@�7X� 

2
nd 

location L2 = |X – J2|= 

./
//
//
0 <0 − �&2� − 1)>��<�7X� = 0<'�� − �&2� − 1)>��<�7	 = 0	<'�J − �&2� − 1)>��<�7!� = '��J<'�K − �&2� − 1)>��<�7Y3X� = '��K<'�L − �&2� − 1)>��<�57XL = '��L 8

99
99
9:
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3
rd

 Jump: J3 = &2� − 1)&2�)K3 and <'��J − =J<�7!� = 0 <'��J − &2��!�)&2�� + 1)>J<�7!� = 0 ⇒ >J =	 @ A��M
&�7X�)&�7)@�7!� 

3
rd 

Location L3 = |X – J3|= 

./
//
//
0 <0 − �&2� − 1)&2�)>J�<�7X� = 0<0	 − �&2� − 1)&2�)>J�<�7	 = 0	<'��J − �&2� − 1)&2�)>J�<�7!� = 0<'��K − �&2� − 1)&2�)>J�<�7Y3X� = '���K<'��L − �&2� − 1)&2�)>J�<�57XL = '���L 8

99
99
9:
 

4
th

 Jump: J3 =&2� − 1)&2�)&2� 	+ 	1)K4 and <'���K − =K<�57XL = 0 ⇒ >K =	 @ A���N
&�7X�)&�7)&�7	!	�)@�57XL 

4
th

 Location L4 = |X – J4|= 

./
//
//
0 <0 − �&2� − 1)&2�)&2� 	+ 	1)>K�<�7X� = 0<0	 − �&2� − 1)&2�)&2� 	+ 	1)>K�<�7	 = 0	<0	 − �&2� − 1)&2�)&2� 	+ 	1)>K�<�7!� = 0<'���K − �&2� − 1)&2�)&2� 	+ 	1)>K�<�7Y3X� = 0<'���L − �&2� − 1)&2�)&2� 	+ 	1)>K�<�57XL = '�QL8

99
99
9:
 

5
th

 Jump: J5 = &2�!�)&2� − 1)&2� 	+ 	1)&2�!� − 1)K5 and <'�QL − =L<�57X� = 0 

⇒ >L =	 Z '�QL&2� − 1)&2� − 1)&2� 	+ 	1)&2�!� − 1)Z�57X� 

5
th

 Location L5 = |X – J5| = 

./
//
//
0 <0 − �&2� − 1)&2�)&2� 	+ 	1)&2�!� − 1)>L�<�7X� = 0<0	 − �&2� − 1)&2�)&2� 	+ 	1)&2�!� − 1)>L�<�7	 = 0	<0	 − �&2� − 1)&2�)&2� 	+ 	1)&2�!� − 1)>L�<�7!� = 0<0	 − �&2� − 1)&2�)&2� 	+ 	1)&2�!� − 1)>L�<�7Y3X� = 0<0	 − �&2� − 1)&2�)&2� 	+ 	1)&2�!� − 1)>L�<�57XL = 0 8

99
99
9:
 

Since &	'Q�, 'Q�, 'QJ, 'QK, 'QL) = &0, 0, 0, 0, 0) 
Therefore, the corresponding decimal number � = =� + =� + =J + =K + =L 

4.2. Numerical Illustration 

Negative Sign Detection using the Algorithm 

(A) For the given moduli set � = #2� − 1, 2� , 2� + 1, 2�!� − 1, 2�� − 5} and taking B = 	2 let the residue for the decimal 

number X, be &1, 1, 4, 3, 0	). Thus �� = 3,�� = 4,�J = 5,�K = 7,�L = 11, '� = 1, '� = 1, 'J = 4, 'K = 3, 'L = 0. 
i. The first jump =� is defined by the number which normally corresponds to the first residue in X. Thus =� = 1. 

The first location ^� is defined by &� − =�) ^� = &� − 1) =
./
//
0 |1 − 1|J = 0|1 − 1|K = 0|4 − 1|L = 3|3 − 1|_ = 2|0 − 1|�� = 108

99
9:
 

ii. Second jump is defined by the number =�, such that: 

=� = 3>� and |0 − 8>�|J ⇒ >� =	 @aJ@K = 0 Thus =� = 0 

The second location ^� is defined by &� − =�)^� = &� − 0) =
./
//
0 |0 − 0|J = 0|0 − 0|K = 0|3 − 0|L = 3|2 − 0|_ = 2|10 − 0|�� = 108

99
9:
 

iii. Third jump is defined by the number 9=J, such that: 

=J = 3 ∗ 4>J and |3 − 12>J|L ⇒ >J =	 @ J��@L = 4 Thus =J = 12 ∗ 4 = 48 
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The third location ^J is defined by &� − =J), ^J = &� − 48) =
./
//
0 |0 − 48|J = 0|0 − 48|K = 0|3 − 48|L = 0|2 − 48|_ = 3|10 − 48|�� = 68

99
9:
 

iv. Fourth jump is defined by the number =K, such that: 

=K = 3 ∗ 4 ∗ 5>K and |3 − 60>K|_ ⇒ >K =	 @ Jda@_ = @
�
�a@_ = @

J
K@_ = @

L
�@_ = 6 Thus =K = 60 ∗ 6 = 360 

The fourth location ^K is defined by &� − =K), ^K = &� − 360) =
./
//
0 |0 − 360|J = 0|0 − 360|K = 0|0 − 360|L = 0|3 − 360|_ = 0|6 − 360|�� = 98

99
9:
 

Fifth jump is defined by the number =L, such that: 

=L = 3 ∗ 4 ∗ 5 ∗ 7>L and |9 − 420>L|�� ⇒ >L =	 @ fK�a@�� = @
K�
K�a@�� = @

f
�@�� = @

�a
� @�� = 10 Thus =L = 420 ∗ 10 = 4200 

The fifth location ^L is defined by &� − =L), ^L = &� − 120) 	= 	
./
//
0 |0 − 4200|J = 0|0 − 4200|K = 0|0 − 4200|L = 0|0 − 4200|_ = 0|9 − 4200|�� = 08

99
9:
 

Therefore, the corresponding equivalent decimal number X is: =� +	=� +	=J +	=K +	=L = 1 + 0 + 48 + 360 + 4200 =4609 

Thus &1, 1, 4, 3, 0	)ghi = 4609jkl��*m. 
noBF��E	'FBpq = � =	r�� = 3. 4. 5. 7. 11 = 4620 

��*+ =	�2 − 1 

=	46202 − 1 

= 	2310 − 1 = 	2309 

Comparing the X computed and the ��*+ , we have 4609 being greater than 2309 as can be seen in Table.1. We then 

subtract the dynamic range from the decimal number to get its equivalent sign number which is 4609 − 4620 = 	−11. This 

indicates that, the number whose residues are &1, 1, 4, 3, 0	) is -11 

Positive Sign Detection using the Algorithm 

(B) For the given moduli set t � = #2� − 1, 2�, 2� + 1, 2�!� − 1, 2�� − 5} and taking B = 	2 let the residue for the decimal 

number X, be&2, 3, 1, 4, 0	). Thus �� = 3,�� = 4,�J = 5,�K = 7,�L = 11, '� = 2, '� = 3, 'J = 1, 'K = 4, 'L = 0. 
i) The first jump =� is defined by the number which normally corresponds to the first residue in X. Thus =� = 2. 

The first location ^� is defined by &� − =�), ^� = &� − 2) =
./
//
0 |2 − 2|J = 0|3 − 2|K = 1|1 − 2|L = 4|4 − 2|_ = 2|0 − 2|�� = 98

99
9:
 

ii) Second jump is defined by the number =�, such that: 

=� = 3>� and |1 − 3>�|K ⇒ >� =	 @�J@K = @
f
J@K = 3, Thus =� = 3 ∗ 3 = 9 

The second location ^� is defined by &� − =�)^� = &� − 9) =
./
//
0 |0 − 9|J = 0|1 − 9|K = 0|4 − 9|L = 0|2 − 9|_ = 0|9 − 9|�� = 08

99
9:
 

iii) Third jump is defined by the number =J, such that: 

=J = 3 ∗ 4>J and |0 − 12>J|L ⇒ >J =	 @ a��@L = 0 Thus =J = 12 ∗ 0 = 0 
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The third location ^J is defined by &� − =J) ^J = &� − 0) =
./
//
0 |0 − 0|J = 0|0 − 0|K = 0|0 − 0|L = 0|0 − 0|_ = 0|0 − 0|�� = 08

99
9:
 

iv) Fourth jump is defined by the number =K, such that: 

=K = 3 ∗ 4 ∗ 5>K and |0 − 60>K|_ ⇒ >K =	 @ ada@_ = 0 Thus =K = 60 ∗ 0 = 0 

The fourth location ^K is defined by &� − =K), ^K = &� − 0) =
./
//
0 |0 − 0|J = 0|0 − 0|K = 0|0 − 0|L = 0|0 − 0|_ = 0|0 − 0|�� = 08

99
9:
 

v) Fifth jump is defined by the number =L, such that: 

=L = 3 ∗ 4 ∗ 5 ∗ 7>L and |0 − 420>L|�� ⇒ >L =	 @ aK�a@�� = 0 Thus =L = 420 ∗ 0 = 0 

The fifth location ^L is defined by &� − =L), ^L = &� − 0) =
./
//
0 |0 − 0|J = 0|0 − 0|K = 0|0 − 0|L = 0|0 − 0|_ = 0|0 − 0|�� = 08

99
9:
 

vi) Therefore, the corresponding equivalent decimal number X is: =� +	=� +	=J +	=K +	=L = 9 + 2 + 0 + 0 + 0 = 11 

Thus &2, 3, 1, 4, 0	)ghi = 11jkl��*m . 
Since 11 is less than 2309, it is a positive 11. 

Comparing the X computed and the ��*+ , We have 11 

being less than 2309 as seen in Table 1, we do not subtract the 

dynamic range from the decimal number to get its equivalent 

sign number, instead we take the results. This indicates that, the 

number whose residues are &2, 3, 1, 4, 0	) is 11. 

Table 1. Sign Detection on the Moduli Set {3, 4, 5, 7, 11}. 

X st  sU = u  sS = v  su = V  sv = w  sV = UU  

x = vySz  Integer X |{|sU = {U  |{|sS = {S  |{|su = {u  |{|sv = {v  |{|sV = {V  

0 0 0 j=0 0 j=0 0 0 0 j=0 

1 1 1 1      1 1 1 

2  2 2 2     2 2 2 

3 3 0 3 3 3 3 

4 4 1 0 4 4 4 

5 5 2 1 0 5 5 

6 6 0 2 1 6 6 

7 7 1 3 2 0 7 

8 8 2 0 3 1 8 

9 9 0 1 4 2 9 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

2304 2304 0 0 4 1 5 

2305 2305 1 1 0 2 6 

2306 2306 2 2 1 3 7 

2307 2307 0 3 1 4 8 

2308 2308 1 0 3 5 9 

��*+ = 2309 2309 2 jmax=769  1 jmax=577 4 6 10 jmax=209 

2310 -2310  0 j= 770 2 0 0 0 

2311 -2309 1 3 1 1 1 

2312 -2308 2 0 2 2 2 

2313 -2307 0 1 3 3 3 

2314 -2306 1  2 4 4 4 

2315 -2305 2 3 0 5 5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

4617 -3 0 1 2 4 8 

4618 -2 1  2 3 5 9 

4619   -1 2 j=1539 3 j=2309 4 6 10 j=419 
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5. Hardware Implementation of the 

Proposed Scheme 

In Figure 1, it can be seen that the proposed scheme is a 

simple architecture built mainly on Carry Propagation 

modular Adders (CPA-modm), two Carry Save Adders (2 

CSAS), two Accumulators (2ACCS) and one Multiplier 

(1MUX). In determining Kn, the MUX and ACC are used 

whilst CPA-modms are used for all the modular 

computations in the conversion process. Also the CSAs are 

used in processing the final X for the sign detection. 

 

Figure 1. Architecture for the Proposed Method. 

6. Performance Analysis 

Table 2. Comparing the Proposed Scheme with the CRT and MRC. 

Conversion Method Use of Dynamic Range (M) Sequential in Nature Use of Modular Computation 

CRT YES NO LESS 

MRC NO YES LESS 

Proposed Technique NO NO DOMINATED 

 

In Table 2, we compare the proposed scheme with the 

Chinese Remainder Theorem (CRT) and the Mixed Radix 

Conversion (MRC). It is observed that converters built 

around the CRT technology largely depend on the Dynamic 

Range (M) which is computationally intensive there by 

increasing the delay and power consumption. Similarly, 

converters built on the MRC are sequential in nature. 

Therefore, the computational processes are equally slow and 
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also inflict high power usage. In the proposed scheme, the 

conversion processes are dominated by modular 

computations which are traded for less delay, low power 

consumption and low cost (less resource requirements). 

7. Conclusion 

In this study, an efficient sign detection scheme in RNS has 

been proposed. The modular computation technique was used 

as a converter which resulted in high degree of parallelism and 

less computational intensity. Theoretical analysis showed that 

the scheme is advantaged with low power consumption, less 

delay and low cost of design. The scheme detects the sign of 

RSN numbers and can be implemented practically to help 

realize the dream of RNS being used in general purpose 

computing 
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