
 

Social Sciences 
2023; 12(2): 47-59 

http://www.sciencepublishinggroup.com/j/ss 

doi: 10.11648/j.ss.20231202.11 

ISSN: 2326-9863 (Print); ISSN: 2326-988X (Online)  

 

Consecutively Halved Positional Voting: A Special Case of 
Geometric Voting 

Peter Charles Mendenhall
1
, Hal M. Switkay

2, *
 

1Research Centre, Geometric-voting.org.uk, Nottingham, UK 
2Department of Arts and Sciences, Goldey-Beacom College, Wilmington, USA 

Email address: 

 
*Corresponding author 

To cite this article: 
Peter Charles Mendenhall, Hal M. Switkay. Consecutively Halved Positional Voting: A Special Case of Geometric Voting. Social Sciences. 

Vol. 12, No. 2, 2023, pp. 47-59. doi: 10.11648/j.ss.20231202.11 

Received: February 3, 2023; Accepted: February 21, 2023; Published: March 4, 2023 

 

Abstract: The Borda count is a positional voting system that favors ‘consensual’ candidates with broad support while 

plurality is instead biased towards ‘polarizing’ ones with strong support. Our article focusses first on developing indices for 

quantifying system bias and then on vector analysis and design, while seeking to find an intermediate vector evenly balanced 

between consensus and polarization. The bias indices are based on the preference weightings of a normalized vector that 

represents a class of affine equivalent ones. The use of weightings that form a geometric progression evolves from this 

development. Such a ‘geometric voting’ vector can represent any positional voting vector with three preferences. With its 

common ratio as the sole variable, this vector can also span the whole spectrum of system bias continuously regardless of the 

number of preferences it employs; as demonstrated by our case study of the 1860 US presidential election with four candidates. 

Using this variable vector as an analytical tool, it establishes the ‘consecutively halved positional voting’ vector as the 

optimum one for balance. In our case study of the 2019 Nauru general election, this balanced vector is compared to its Dowdall 

rival that comprises a harmonic progression of weightings and several advantages are identified. 
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1. Introduction 

For a single-winner election, there is a wide variety of 

voting systems from which to choose. Even within the class 

of voting systems that rely on voters' preference ranking of 

candidates, there are several methods, including Instant 

Runoff Voting, Condorcet methods and positional voting. 

This third category deserves more attention, although Saari 

[1] has re-evaluated and promoted the Borda count. 

The Borda count employs positional weightings that form 

an arithmetic sequence. The Dowdall method instead 

employs a harmonic sequence of weightings. We shall show 

that both these methods tend to favor consensus candidates, 

particularly when the number of candidates is large. We 

intensively study a third available mathematical sequence: a 

geometric one. As we vary the common ratio in the sequence 

between zero and one, we smoothly interpolate between 

plurality, the method most favorable to polarizing candidates, 

and the Borda count. Such common ratios do not appear to 

have been specifically addressed in social choice literature. 

Our research seeks to investigate and compare these three 

types of positional voting sequences and how they affect the 

demotion or promotion of consensus and polarized 

candidates. We start from first principles in order to quantify 

system bias and then explore the full spectrum of vector bias 

from consensus to polarization. This analysis will answer the 

question of whether there are any intermediate non-arbitrary 

vectors that exhibit specific, critical, or useful properties. 

In positional voting (PV), voters express their preferences 

for the various candidates (or options) by casting a ranked 

ballot. Each voter expresses a preference ( � ) for each 

candidate in strict descending rank order. For a PV election 

with a choice of � � 2  preferences, let �  define the rank 

position from the top rank � � 1 for the highest preference �� 

down to the bottom rank � � � for the lowest preference �	. 

For the following analysis, every voter must express a 

preference of some rank for each candidate for their ballot to 

be valid. No truncation of preferences is permitted. Also, no 
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two preferences cast by a voter may share the same rank. 

Tied preferences are invalid. 

Each preference �
  awarded by a voter is given a 

weighting of value �
 according to its rank position � within 

the range 1 � � � � . Let the vector 

v � ���, ��, . . . , �	��, �	�  represent the �  weightings 

associated with each ballot. Any vector must satisfy two 

criteria [1]. Firstly, the weightings are non-increasing; 

namely, �
 � �
��  for all �  such that 1 � � � �.  Secondly, 

the first preference must be worth more than the last 

preference; namely, �� � �	. 

Let � votes be the total number of valid ballots cast in a 

PV election. Each candidate is awarded a total of � 

preferences from the voters. The �  weightings associated 

with these specific preferences are then totaled to become the 

tally (��) for that candidate (�). These tallies are then rank 

ordered from highest to lowest score. The collective rank 

ordering of the candidates is determined by their tallies. 

Since all candidates are fully ranked, one or more of the top 

ones may be elected. However, with the sole exception of the 

real-world case study in section 9, the focus throughout is on 

single-winner elections, so the candidate with the highest 

tally wins. Two or more candidates may tie in the resultant 

ranking. For practical elections, ties for first place may be 

resolved by employing a random tie-break. 

Positive affine transformations of the weighting vectors do 

not change candidate rank orders. That is, if � � 0 and � is 

arbitrary, then �� � ��  implies ����  ��� � ����  ���; 
as confirmed by Saari [1]. Therefore, different vectors may 

generate identical candidate rankings under all voter profiles. 

Such vectors are hence affine equivalent. It is useful to 

employ just one ‘normalized’ vector w � �"�, . . . , "	�  to 

represent all those vectors that are affine equivalent to it. The 

normalized vector used here is w � �1, . . . ,0� where "� � 1 

and "	 � 0. To normalize vector v, �	  is subtracted from 

each of its components and then each one is divided by 

�� # �	. The components of vector w are hence determined 

using the equation "
 � ��
 # �	� ��� # �	�⁄  for affine 

equivalence; that is, w ≡ v. 

No two distinct normalized PV vectors will produce the 

same collective candidate rankings under all voter profiles. 

The Borda count vector �1,1 # &, 1 # 2&,… ,2&, &, 0�, where 

& � 1 �� # 1�⁄  is the common difference between 

consecutive weightings, generates very different outcomes to 

those of the plurality-equivalent vector �1,0, … ,0� . 

Candidates attracting both strong support and opposition may 

be characterized as ‘polarizing’ while those having broad 

support may instead be described as ‘consensual’. As will be 

observed in the case study in section 9, consensual candidates 

fare better in a Borda count election than in a plurality rule 

one whereas the reverse is true for polarized ones. The choice 

of the PV vector for any given election is critical in 

influencing whether such candidates are promoted or 

demoted by this choice. Importantly, can a balanced vector 

be obtained whereby neither strong support for one candidate 

nor broad support for another is inherently dominant? 

Consider the case where a consensus candidate, �� , has 

broader but weaker support than an opposing polarized 

candidate, �(. �(  is awarded a preference weighted "
  by a 

proportion )  of all voters. In contrast, ��  receives a lower 

preference of weight "
�*  from a higher proportion +  of 

voters. Does the tally contribution of )"
  for �(  outweigh 

that of +"
�*  for �� ? When they are tied, )"
 � +"
�* , 

hence ) +⁄ � "
�* "
⁄ . Given the specific support for each 

candidate, it is the ratio of the two weightings that determines 

which has the larger contribution. As the disparity between 

the two weightings widens, the prospects for �(  improve, 

while those for �� advance as this margin narrows. 

The bias of a PV vector towards consensus or polarization 

is not just dependent upon the weighting of one preference 

relative to another, but is a function of the ratios between all 

weightings. For any PV vector, the following analysis 

develops indices that indicate in which direction and to what 

extent the system is biased. Using them, a vector with a 

desired bias can be designed. In particular, the use of 

weightings forming a geometric progression emerges from 

this analysis. Such vectors can smoothly interpolate between 

the plurality and Borda count bias extremes regardless of � 

with just a single variable, the common ratio, as the case 

study in section 7 demonstrates. The intermediate vector 

within this spectrum that employs consecutively halved 

weightings optimizes the balance between strong versus 

broad candidate support. In section 9, our real-world case 

study compares this balanced vector against Dowdall’s 

method of using a harmonic sequence of weightings and 

several advantages emerge. 

2. Bias Indices 

The relative worth of one rank position compared to 

another greatly influences the bias of a PV system. Consider 

two adjacent positions in a normalized vector w where the 

higher preference has a weight of "
  and the lower 

preference a weight of "
��. Two extreme examples and an 

intermediate one of the disparities between these two 

weightings are shown in figure 1. 

 

Figure 1. Examples of polarization and consensus biases. 

In the polarized example, the weighting of the lower-

ranked preference is zero so the ratio of the two weightings 

"
�� "
⁄  is also zero. The consensus example represents the 

other extreme. Here the weightings are of the same value so 

the ratio "
�� "
⁄  equals one. Therefore, the ratio , �
"
�� "
⁄  varies within the range 0 � , � 1 . As this ratio 

increases from zero to one, the differential preference bias 

changes from being wholly polarized to wholly consensual. 

Hence, this ratio may be employed as the consensus bias 

index �-. for the lower preference. Conversely, as the ratio , 
decreases, the bias becomes increasingly more polarized. The 
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complementary ratio 1 # , � �"
 # "
��� "
⁄  is thus 

appropriate as the polarization bias index �-.  for the lower 

preference. As desired, these two opposing indices always 

sum to unity as illustrated by the mixed example in figure 1. 

That is, �-.  �-. � 1. 

Only one of these two indices is strictly required as the 

other is a dependent variable. However, in some later 

contexts one index is the more efficient while in others it is 

the complementary version. This particularly applies to the 

vector indices that are developed below. Therefore, reference 

to either or both indices for preferences or for vectors may be 

cited hereafter. 

 

Figure 2. Differing pairs with common indices. 

The ratio , only refers to the lower preference relative to 

the higher one in each adjacent pair. There is no reference to 

the absolute value of either weighting. In figure 2, both pairs 

of adjacent preferences have the same weightings ratio , but 

different absolute values. All the preference bias indices 

affect the overall system bias so all are required to be 

incorporated into indices for the vector, but a higher-ranked 

pair needs to contribute more than a lower-ranked one as 

their weightings are worth more. 

The overall vector indices are defined by taking the 

weighted average of all the individual preference indices. 

Since the ratio ,  is referenced with respect to the higher 

preference, then the weighting of this higher rank is 

appropriate for this derivation. Each preference pair then 

contributes "
�-
��  towards the calculation of the vector 

consensus index, �- , and "
�-
��  towards the vector 

polarization index, �-. These two individual sums are then 

divided by the sum of all the higher preference weightings to 

produce the required weighted average. 

Let Σ � "�  ⋯ "	 , the sum of the components of a 

normalized vector w. Recall that "� � 1 and "	 � 0. Then: 

�- � ∑ 23�4356786396
∑ 23786396

  

�- � ∑ 23:;356;3 <
786396
∑ 23786396

  

�- � ∑ 2356786396
∑ 23786396

  

�- � =�26
=�27  

�- � =��
=   

Similarly: 

�- � ∑ 23(4356786396
∑ 23786396

  

�- � ∑ 23:;38;356;3 <786396
∑ 23786396

  

�- � ∑ �23�2356�786396
∑ 23786396

  

�- � 26�27
=�27   

�- � �
=  

In summary, �- � 1 # 1 Σ⁄ , �- � 1 Σ⁄  and �-  �- � 1 . 

The sum Σ  ranges within 1 � Σ � � # 1  since 1 � "� �⋯ � "	 � 0. Therefore, the vector indices vary within the 

range 0 � �- � �� # 2� �� # 1�⁄  for the consensus index 

and within 1 �� # 1�⁄ � �- � 1 for the polarization index. 

For the plurality vector �1,0, … ,0�, Σ � 1; consequently, 

�- � 1  and �- � 0 . As it is uniquely the most polarized 

vector, these extreme values accurately reflect this status. 

The �  weightings of the Borda count vector �1,1 # &, 1 #
2&,… ,2&, &, 0� form an arithmetic progression whose sum Σ 

is �"�  "	�� 2⁄ � � 2⁄ . As � increases without bound, the 

indices vary within the ranges 0 � �- � 1 and 0 � �- � 1. 

For the anti-plurality vector �1, … ,1,0�, Σ � � # 1  and for 

� � 2 it is more consensual than the Borda count since its 

sum Σ is larger. However, the full range of its bias indices are 

identical to those for the Borda count as N increases without 

bound. For the alternative anti-vector version of anti-plurality 

see section 3. 

Another PV method is the unique Dowdall system 

established in Nauru, whose weightings form a harmonic 

progression �1, 1 2⁄ , … , 1 �� # 1�⁄ , 1 �⁄ � [2]. The harmonic 

sum is defined by >	 � ∑ �1 �⁄ �	
?� . When the Dowdall 

vector is normalized, its bias index 

�- � �1 # 1 �⁄ � �>	 # 1�⁄ . Hence, the index ranges are 

again 0 � �- � 1 and 0 � �- � 1 as � varies. 

With just two candidates, the plurality, Dowdall, Borda 

count and anti-plurality vectors all normalize to �1,0�  so 

necessarily have the same bias indices; namely �- � 1 Σ⁄ �
1, and �- � 0. All PV vectors are therefore equivalent to 

plurality when there is a straight fight between two 

competitors. As � increases, the �- for all these vectors also 

increases towards unity; except for plurality which remains 

wholly polarized. Hence, each becomes ever more 

consensual as the field of candidates expands. The ultimate 

consensus vector, the indifference vector �1, … ,1�, is invalid 

since its first and last preferences are equal. Indeed, all its 

preferences are identical so it is wholly consensual and thus 

cannot distinguish between any of the candidates. It is 

therefore fortunate that the Dowdall, Borda count and anti-

plurality vectors are never quite fully consensual. 

3. Anti-Vectors and Conjugate Vectors 

To every normalized vector w � �"�, "�, … , "	��, "	� 
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we define a corresponding anti-vector w�  and conjugate 

vector w�  by: 

w� = (−"	 , −"	��, … , −"�, −"�) 
w� = (1 − "	 , 1 − "	��, … ,1 − "�, 1 − "�) 

Note: 1) both these operations are involutory: namely, 

(w�)� = w and (w�)� = w; 2) the anti-vector and conjugate 

vector differ by the indifference vector, hence are affine 

equivalent; 3) the conjugate vector is normalized. 

Anti-plurality is the complementary voting system to 

plurality in that each voter casts a favorable vote for just one 

candidate in a plurality election, but casts an unfavorable 

vote against just one candidate in an anti-plurality election 

[1]. When using PV vectors, voters are casting positive 

preferences in favor of candidates rather than negative ones 

against them. For PV anti-vectors, it is the other way round. 

As the plurality (PL) vector is (1,0, … ,0), its anti-vector, 

A-PL, is (0, … ,0, −1), and its conjugate vector is (1, … ,1,0). 
For anti-plurality, either of these affine equivalent versions 

may be used in practice. As the Borda count (BC) vector is 

(1,1 − &,… , &, 0) , its anti-vector, A-BC, is (0, −&,… , & −
1,−1)  and its conjugate vector is (1,1 − &,… , &, 0) . Note 

that the BC vector is self-conjugate. As any anti-vector and 

its corresponding conjugate vector are affine equivalent, their 

bias indices are identical. 

Since PL and BC are opposed extremes in terms of vector 

bias, their anti-vectors and conjugate vectors are similarly 

opposed extremes. The Borda count’s self-conjugacy 

connects both ranges at this common extreme. So, this full 

spectrum is a function of Σ if anti-vectors are normalized into 

their equivalent vector format, the conjugate vector. By 

adding one to each non-positive weighting to achieve this 

conversion, � is thereby added to the sum of the weightings. 

For A-BC, this anti-vector has a sum of −�/2, while the 

conjugate vector has a sum Σ = � − �/2 . Hence the BC 

vector, and necessarily every self-conjugate one, must have 

the same sum Σ = �/2 . Since Σ  varies within the range 

1 ≤ Σ ≤ � − 1 , all possible normalized PV vectors are 

included within the bias spectrum from the wholly-polarized 

PL vector, via the BC vector and A-BC anti-vector, to the 

maximally-consensual A-PL anti-vector for any given 

number of candidates. 

4. Designing a Positional Voting System 

for a Specific Bias 

Having defined the bias indices for any PV system, it is 

then possible not only to compute the bias associated with a 

particular vector or anti-vector but also to design one that 

yields the desired system bias. By first specifying the 

required polarization index subject to 0 < �- ≤ 1, the sum Σ 

is determined as 1/�-. Once it has been identified, any valid 

set of weightings yielding this total will have the requisite 

bias. However, many vectors generating different overall 

candidate rankings will have an identical system bias. For 

example, the Vote-for-3-out-of-6 vector (1,1,1,0,0,0) 
produces the same indices as that of a six-candidate BC, 

since for both, the sum Σ = 3 = � 2⁄ . The selection of the 

individual weightings comprising Σ will characterize not just 

its bias but other features of the system such as susceptibility 

to cloning; see section 10. 

For a rigorous approach to deriving weightings with a 

chosen bias, reference should be made to the original 

derivation of the indices in section 2. Each vector index (�- 
or �-) is the weighted average of all the individual indices 

(�-. or �-.) associated with the vector. By choosing the same 

value for every individual index, the weighted average of 

them for the vector index necessarily has the same value. 

Using this systematic PV design approach, each �-. =
�- = 1/Σ and each �-. = �- = 1 − 1 Σ⁄ = (Σ − 1) Σ⁄ . Since 

by definition �-
�� = "
�� "
⁄ , then this common ratio 

"
�� "
⁄ = , = (Σ − 1) Σ⁄ . A sequence of weightings with a 

common ratio ,  between adjacent preferences forms a 

standard geometric progression. Such a vector v  has the 

format (1, ,, … , ,	��, ,	��) where the weighting of the first 

preference is unity. Solving , = (Σ − 1) Σ⁄  for Σ  yields 

Σ = 1 (1 − ,)⁄ . Thus, , = 1 is not permitted, but it may vary 

within the range 0 ≤ , < 1 to produce valid vectors. Note 

that if , = 1 was used, the vector would be affine equivalent 

to the invalid indifference one. Also, , > 1 is impermissible 

since lower preferences would then have greater weight than 

higher ones. Since it would result in an invalid sequence of 

alternating positive and negative weightings, , < 0  is 

similarly not permitted. 

5. Geometric Voting 

Let a valid vector with a common ratio , be referred to as 

a GV(r) vector, where GV stands for Geometric Voting. The 

standard GV (0 ≤ , < 1)  vector v = (1, ,, … , ,	��, ,	��) . 

Consider the case of an election with infinitely many 

candidates. The sum to infinity of the vector weightings is 

the sum of the geometric series, BC = 1 (1 − ,)⁄ . From this 

sum, the two bias indices are: 

�- = 1 Σ⁄ = 1 BC =⁄ 1 − , 

�- = 1 − �- = , 
For a GV(r) vector, its consensus index approaches its 

common ratio as � tends to infinity. For an election with � 

candidates, the sum of the vector weightings is defined by 

B	 = (1 − ,	) (1 − ,)⁄ . Since 0 ≤ , < 1 , as �  increases, 

,	  decreases towards zero, so B	  approaches 1 (1 − ,)⁄ . 

Therefore, designing a PV system with a bias of �- = , only 

requires a GV(r) vector to be adopted, provided a large 

enough field of candidates is anticipated. 

Recall that the standard GV(r) vector v  has not been 

normalized, since the value of its lowest preference �	 is not 

zero but ,	��. When it is close to zero, there is a negligible 

reduction in the value of each weighting following 

normalization. Strictly, however, the sum on which the bias 

indices are based is the sum Σ of all the normalized vector 

weightings. Hence, when �	  is not close to zero, these 

indices must be accurately calculated. The derivation of the 

sum Σ for a normalized GV(r) vector w is shown below. 

As the standard GV(r) vector v is (1, ,, … , ,	��, ,	��), the 
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normalized GV(r) vector w is: 

�
��D786 �1 # ,	��, , # ,	��, … , ,	�� # ,	��, 0�  

Since Σ  is the sum of all the normalized preference 

weightings, then: 

Σ � �
��D786 �∑ ,
	��
?E #�,	���  

Σ � �
��D786 F

��D7
��D # �,	��G  

Σ � H��D7I����D�	D786
���D����D786�   

Σ � �
��D F

��D7�	D786�	D7
��D786 G  

Σ � �
��D F

��D7�D786��	���D786�	D7
��D786 G  

Σ � �
��D F1 #

�	���D786��	���D7
��D786 G  

Σ � �
��D F1 #

���D��	���D786
��D786 G  

Σ � �
��D #

�	���D786
��D786   

Thus, for fixed ,  between 0 and 1, as �  increases, Σ 

approaches 1 �1 # ,�⁄ . 

Figure 3 illustrates how the consensus bias index of a 

GV(r) vector varies according to the number of candidates, 

for a selection of common ratios from its minimum value, 

, � 0, through to its maximum, , � 1 # J, where J → 0. 

 

Figure 3. Examples of GV(r) vector bias. 

For the standard GV(r) vector v , there is always the 

common ratio , between adjacent preferences. However, the 

process of normalization disturbs these individual ratios such 

that they are no longer identical. Indeed, the consensus bias 

index for the lowest preference �	 is always �-	 � 0 and not 

, . These disturbances increase as �  decreases or as , 
increases. The gap between the actual value of the consensus 

index for a GV(r) vector and that of its limit, �- � , , is 

visible in figure 3. For low common ratios and a sufficiently 

large field of candidates, this gap is insignificant. 

The GV(0) vector �1,0, … ,0� is identical to the PL vector. 

At the other extreme, the common ratio approaches one; 

namely, , � 1 # J , where J → 0. Here, the standard GV(r) 

vector is �1,1 # J, �1 # J��, … , �1 # J�	��� . By the 

binomial theorem, the ��  1�-st component of the vector is 

1 # �J  L�J��. As J → 0, for fixed �, terms of the form 

L�J�� may be ignored. Therefore, as , → 1, for fixed �, the 

GV(r) vector is approximated by the arithmetic progression 

�1,1 # J, 1 # 2J,… ,1 # �� # 1�J�. This resultant vector is 

therefore identical to a BC vector where J  is the common 

difference, and where Σ → � 2⁄  when the weightings are 

normalized. Hereafter, the notation GV(→1) is used to 

denote GV(r) with , → 1. 

Standard GV �0 � , � 1�  vectors have normalized 

weightings sums in the range 1 � Σ � � 2⁄ . At the lower end 

of both ranges, the GV(0) vector with Σ � 1 is the PL vector. 

At the higher end of both ranges, the GV(→1) vector with 

Σ → � 2⁄  approaches a BC vector. Thus, GV(r) vectors 

where 1 � Σ � � 2⁄  provide a one-parameter family of PV 

vectors smoothly interpolating between PL and BC for any 

given number of candidates. 

The anti-vector of the standard GV(r) vector 

�1, ,, … , ,	��, ,	���  is �#,	��, #,	��, … , #,, #1� , and its 

conjugate vector is �1 # ,	��, 1 # ,	��, … ,1 # ,, 0� . The 

anti-vector of the GV(0) vector �1,0, … ,0� , A-GV(0), is 

�0, … ,0, #1� . Hence, A-GV(0) is equivalent to A-PL. 

Similarly, for the normalized GV(→1) vector �1,1 #
&,… , &, 0� , its anti-vector A-GV(→1) is �0, #&,… , & #
1,#1�. Therefore, A-GV(→1) is equivalent to A-BC. Thus, 

A-GV(r) anti-vectors provide a one-parameter family of PV 

anti-vectors smoothly interpolating between A-BC and A-PL. 

As these anti-vectors are affine equivalent to conjugate 

vectors where � 2⁄ � Σ � � # 1, then, for 1 � Σ � � # 1, 

the whole bias spectrum from PL via BC/A-BC to A-PL is 

essentially encompassed for any given number of candidates. 

As an example, figure 4 shows the weightings for the 

standard ten-candidate GV(1/2) vector v, its anti-vector A-

GV(1/2), and its conjugate vector. The consensus index for 

this vector v is approximately 0.495558 , very close to its 
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asymptotic value of �- � 0.5. This mid-range value for both 

the common ratio and the bias indices, , � 1 2⁄ � �- � �-, 
produces a balanced vector where the bias towards 

polarization is cancelled out by that towards consensus. 

 

Figure 4. Weightings of GV(1/2), its anti-vector, and conjugate vector, for 

� � 10. 

As all GV(r) vectors and A-GV(r) anti-vectors constitute a 

subset of PV ones, they satisfy all the voting system criteria 

and match all the other characteristics of positional voting 

that these PV vectors collectively do. However, only one PV 

vector satisfies the reversal symmetry criterion; namely, the 

Borda count [1]. This criterion requires that the ranking of 

the candidate tallies be reversed when the voters’ ranking 

preferences are reversed. This property is not valued in 

practice, however. For single-winner elections, it is far more 

consequential whether candidate C finishes in first or second 

place, compared to whether C is in last or penultimate place 

after reversal [3]. 

6. Equivalent Three-Preference 

Positional Voting Systems 

 

Figure 5. Three-preference vector map. 

For PV elections with just three candidates standing, the 

equilateral-triangular map shown in figure 5 can represent 

any possible vector u , with the three preferences �� ��1,0,0� , �� � �0,1,0� , and �R � �0,0,1� ; whether valid or 

not. A barycentric coordinate system is used for measuring 

perpendicular distances from the respective sides of the 

triangle, with coordinates summing to one. A general vector 

projects onto this plane using the rule u � �S�, S�, SR�/T , 

where T � S�  S�  SR. The GV(r) vector u is represented 

by �1, ,, ,��/�1  ,  ,��. 
A rectangular coordinate system is superimposed onto 

figure 5. The x-axis is the directed line through ��  and �R . 

The y-axis perpendicularly bisects the edge connecting �� 

and �R, and is directed towards ��. The origin is the midpoint 

of the edge connecting �� and �R. 

Next, U  is defined as the directed horizontal distance 

measured leftward from u to the edge connecting �� and ��, 

and V is the directed horizontal distance measured rightward 

from u  to the edge connecting ��  and �R . The cartesian 

coordinates for any vector u are given below: 

W � XY
Z   

[ � \�]
� � �

� F
�X^
Z√R#

�X6
Z√RG �

X^�X6
Z√R   

Of the six congruent ranking regions within the map 

representing the six possible orderings of the three 

barycentric coordinates, only the one containing the point PV 

(corresponding to a specific PV vector) represents valid 

vectors, since only here is S� � S� � SR. The map’s center 

where S� � S� � SR  represents the invalid indifference 

vector, and is not considered part of any ranking region. 

Consider the vectors �1 # W, W, 0� where 0 � W � 1/2. On 

the map, the locus of these vectors is the lower half of the 

edge connecting ��  and �� , where SR � 0. It is also one of 

the three boundaries of the valid ranking region. In terms of 

collective candidate rankings, Saari has shown that any valid 

PV vector is equivalent to a vector in this half-edge [1]. 

When plotted on the map in figure 5, all these equivalent 

vectors are located at points along a line between the map’s 

edge at �1 # W, W, 0� and its center at �1 3⁄ , 1 3⁄ , 1 3⁄ �; see 

the line W � �[  1/3 on the map. The affine equivalence of 

two vectors is demonstrated by projection, from the triangle’s 

center through its interior onto its boundary. An algebraic 

proof of this statement follows below. 

Consider these two affine equivalent vectors: 

�X6,XY,X^�
Z ≡ �X6�*,XY�*,X^�*�

Z�R*   

Substituting the cartesian coordinates �[, W�  for each 

vector yields: 

FX^�X6Z√R ,
XY
Z G ≡ F

X^�X6
�Z�R*�√R ,

XY�*
�Z�R*�G  

The line W � �[  1/3  has slope � , and the triangle’s 

center is �0, 1 3⁄ � in rectangular coordinates. Then: 

� � `�� Ra
b � FcYd �

6
^G

Fc^8c6d√^ G �
FcY5ed5^e�

6
^G

: c^8c6
�d5^e�√^<

  



 Social Sciences 2023; 12(2): 47-59 53 

 

FcYd �
6
^G

Fc^8c6d G �
FcY5ed5^e�

6
^G

Fc^8c6d5^e G
  

FXY�d^G
X^�X6 �

FXY�*�d5^e^ G
X^�X6   

S� # Z
R � S�  � #

Z
R # �  

S� # Z
R � S� #

Z
R  

Reversing the steps from the final identity, the original 

equation is established. Therefore, any two vectors along this 

straight line through the valid ranking region from the map’s 

edge to its center are equivalent as regards collective 

candidate rankings. 

Further, every valid PV vector is located on such a line. As 

the vertex ��  represents the PL vector �1,0,0) , all points 

along the line from here to the map center are PL equivalent, 

as they do not distinguish between second and third place 

rankings. Similarly, all points along the line from (1/2,1/
2,0)  to the map center are equivalent to the anti-plurality 

conjugate vector (1,1,0), as they do not distinguish between 

first and second place rankings. These two lines are the other 

boundaries of the valid ranking region. The horizontal 

straight line W = 1/3 represents all the BC-equivalent vectors 

(W + &, W, W − &) where 0 < & ≤ 1/3. 

With non-negative weightings, GV(r) vectors may also be 

plotted on a three-preference map. Using the GV(r) vector u 

as given below ensures that the three preference coordinates 

sum to unity: 

u = (X6,XY,X^)
X6�XY�X^

= H�,D,DYI
��D�DY  

The cartesian coordinates ([, W) for vector u are: 

FX^�X6Z√R ,
XY
Z G = F

DY��
(��D�DY)√R ,

D
(��D�DY)G  

As the common ratio varies from 0 towards 1, what 

trajectory on the map does the GV(r) vector u follow? As 

shown by the red curve on the map, the locus forms a circular 

arc with a radius of 2/3 centered at ([, W) = (0, −1 3⁄ ), or 

(2 3⁄ , −1 3⁄ , 2 3⁄ )  in barycentric coordinates. Using the 

equation for a circle, the following proof confirms this 

statement: 

F�RG
�
= ([ − 0)� + FW + �

RG
�
  

f
g = F

DY��
(��D�DY)√RG

�
+ F D

��D�DY +
�
RG
�
  

f
g =

�
R F

DY��
��D�DYG

�
+ FRD���D�D

Y

R(��D�DY) G
�
  

4 = 3 F DY��
��D�DYG

�
+ F��fD�D

Y

��D�DY G
�
  

4(1 + , + ,�)� = 3(,� − 1)� + (1 + 4, + ,�)� 

4H(1 + , + ,�) + (, + ,� + ,R) + (,� + ,R + ,f)I =
3(,f − 2,� + 1) + (1 + 4, + ,�) + (4, + 16,� + 4,R) +

(,� + 4,R + ,f)  
4 + 8, + 12,� + 8,R + 4,f = 4 + 8, + 12,� + 8,R + 4,f 

Reversing the steps from the final identity, the original 

equation is established; thus, the circular arc displayed on the 

map is indeed the locus of GV(0 ≤ , < 1) vectors. 

For PV vectors formed as a non-negative linear 

combination of PL and BC, any positive-slope line in the 

valid ranking region from the map’s edge to its center only 

intersects the arc of GV(r) vectors at one unique point. 

Therefore, the GV(r) vector represented by this point is 

equivalent to all the other PV vectors identified by this line. 

The common ratio here is derived as follows from the 

definition of the weightings: 

u = (X6,XY,X^)
X6�XY�X^

= H�,D,DYI
��D�DY  

X6�XY
Z = ��D

��D�DY  

XY�X^
Z = D(��D)

��D�DY  

, = XY�X^
X6�XY

  

Therefore, for any three-preference PV vector that is a 

non-negative linear combination of PL and BC, there is an 

equivalent GV(r) vector as defined below: 

��(S�, S�, SR) ≡ i� F, = XY�X^
X6�XY

G  

Here, the compound inequality 0 ≤ , < 1  can be re-

written: 0 ≤ (S� − SR) (S� − S�)⁄ < 1. Since the numerator 

and denominator of the fraction are non-negative, it follows 

that S� − SR < S� − S� . On the triangle’s edge where SR =
0, this simplifies to S� < S� − S� , or 2S� < S� . Since the 

sum of the coordinates is one, it follows that the projection of 

the GV(0 ≤ , < 1) arc from the triangle’s center onto its 

edge has range equal to the line segment from (1,0,0)  to 

(2 3⁄ , 1 3⁄ , 0) in barycentric coordinates. 

As mentioned earlier, Saari has similarly demonstrated that 

the vector (1 − j, j, 0)  is affine equivalent to (S�, S�, SR) 
where j = (S� − SR) (S� + S� − 2SR)⁄  [1]. With only three 

preferences, just a single variable (j  or , ) is sufficient to 

allow an equivalent vector to represent one anywhere 

between PL and BC. However, for more preferences, � − 2 

variables are needed. Nevertheless, with just the sole variable 

,, GV(r) vectors can represent some - but not all – vectors on 

a continuous system bias spectrum smoothly interpolating 

between PL and BC for any number of preferences. In 

section 7, an example of such a spectrum is provided for an 

historic election in which four candidates competed. 

7. Case Study: 1860 US Presidential 

Election 

The United States presidential elections of 1824 and 1860 

were the only ones in which four presidential candidates 

earned electoral votes (as opposed to spurious ones cast by 
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faithless electors). The 1860 election is particularly important 

for its connection to the subsequent American Civil War. It 

has been studied by historians in order to understand the 

influence of the choice of voting system. Different ones 

might have led to a different election outcome, possibly 

avoiding war, but also possibly prolonging slavery. 

The result of a PV election could only be calculated with a 

hypothetical profile for the voters of 1860. Such a profile 

would need to be consistent with existing information about 

vote totals, which enumerate the first choices of voters. Saari 

describes two attempts that were made by historians to 

estimate the complete voter profile: the second, third, and 

fourth choices of voters whose first choices were known [4]. 

One such profile was constructed by Riker; the other by a 

team of historians [5]. 

The four candidates were Abraham Lincoln (Republican), 

Stephen Douglas (Democratic), John Breckinridge (Southern 

Democratic), and John Bell (Constitutional). The profiles by 

Riker and by the team of historians are largely similar, except 

for a dispute regarding the ranking by Lincoln voters. Both 

teams agree that they would place Breckenridge in last place. 

However, Riker believed that most Lincoln voters preferred 

Bell over Douglas; in contrast, the second team believed that 

they were about evenly split between Bell and Douglas as a 

second choice. 

For simplicity, we studied the mean of the two profiles. 

Our study is based on an imaginary contest in the popular 

vote, as opposed to the constitutional procedure of an 

electoral college vote. 

Figure 6 depicts the effect of changing ,  on the four 

components of the normalized GV(r) vector w. 

 

Figure 6. Components of normalized GV(r) vector " for � � 4. 

In describing vote share, it is useful to see the same 

components renormalized such that their sum is equal to one; 

as in the previous section. Figure 7 displays the components 

for the resultant GV(r) vector S � �S�, S�, SR, Sf� ��"�, "�, "R, "f� �"�  "�  "R  "f�⁄ . 

 

Figure 7. Components of resultant GV(r) vector u. 
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Finally, the components of the vector u shown in figure 7 are applied to the hypothetical profile described above, and the 

percentage vote share computed for each candidate under GV(r) for all , between 0 and 1; see figure 8. 

 

Figure 8. Popular vote in the 1860 US presidential election under GV(r). 

The plurality-winner Lincoln appears as a strong but 

polarizing candidate, while Breckinridge seems to have had 

little support outside the South, nor could he defeat Lincoln 

at any value of ,. Similarly, Bell could not defeat Douglas at 

any value of ,. The consensus candidate Douglas however 

maintains a consistently good performance at all values of , 
and would have won a Borda count contest. Indeed, his 

popular vote share surpasses that for Lincoln using a 

common ratio of 1/2 or higher. 

8. Consecutively Halved Positional 

Voting 

Let the GV(1/2) vector be called the Consecutively Halved 

Positional Voting or CHPV vector as it is an important and 

special case of GV. For a balanced PV system, neither broad 

support for one candidate nor strong support for a competitor 

is allowed to dominate the other. Using CHPV, a weighting at 

any rank position is always worth the same as two at the 

adjacent lower rank; namely, "
 � 2"
�� . Whether a 

candidate campaigns to upgrade a preference to the next 

higher rank or to gain an extra preference at the same rank 

instead, the additional tally contribution is identical. Hence, 

stronger, or broader support here is of equal value. 

For a precisely balanced vector, �- � �- � 1 2⁄ . Hence, 

Σ � 1 �-⁄ � 2.  Also, Σ � "�  ∑ "
	
?� . Since Σ � 2  and 

"� � 1, then ∑ "
 � 1	
?� . For a normalized GV(r) vector w, 

∑ "
	
?� � "� . In other words, the first preference must be 

worth the same as all the remaining ones in total to achieve 

balance. CHPV is the sole PV vector v to have the unique 

property that any one of its standard weightings is always 

equal to the sum to infinity of all the lower weightings; that 

is, �
 � ∑ �
�kCk?�  for all � such that 1 � � � �. For the first 

preference for example, 1 � 1 2⁄  1 4⁄  1 8⁄  ⋯ 1 ∞⁄ . 

Therefore, since �
 → "
  as �	 → "	 � 0, the only solution 

to "� � ∑ "
C
?� � ∑ �
C
?� � ∑ ,
��C
?� � 1  is where 

, � 1 2⁄ . This sum exceeds one when , � 1 2⁄  and is less 

than one when , � 1 2⁄ . For a practical election with a 

sufficiently large number of candidates, ∑ �1 2⁄ �
��	
?� ≅ 1 

and the approximation asymptotically converges on unity as 

� increases; see the disparity between �- � 1 2⁄  and the �- 
curve for GV(1/2) in figure 3. CHPV becomes ever more 

balanced as the field of candidates expands and is the only 

GV(r) vector to converge towards exact balance. 

Consider an election employing the standard CHPV vector 

v where a polarized candidate, �(, is awarded first preference 

(�� � 1 ) by a proportion )  of voters, and last preference 

(�	 → 0) by the remaining voters. Amongst other candidates, 

a consensus candidate, �� , gains all the remaining first 

preferences and additionally second preferences (�� � 1 2⁄ ) 

from the other voters; its strongest possible challenge to �(. 

The proportional tally for ��  is then �1 # )�1  )�1 2⁄ � �
1 # ) 2⁄ , and for �(  it is at least ). These tallies are equal 

when ) � 2 3⁄ . Therefore, with �	 → 0 , the polarized 

candidate requires at least a two-thirds majority of first 

preferences to ensure victory regardless of how many 

candidates compete or how other votes are cast; otherwise, 

the consensus candidate wins. 

Plurality satisfies the majority consistency criterion but the 

Borda count does not [6]. To pass this criterion, any 

candidate with a tally higher than the total received by all the 

other candidates must win. Using the polarized PL vector, a 

candidate only needs to exceed a simple majority to win; so, 

satisfying this criterion. Whereas for the BC vector, a 

consensus candidate may still win even when the vast 

majority of first preferences are awarded to a polarized 

candidate [7]. The candidate with the most first preferences 

has the strongest support and wins a PL election while the 

candidate with the highest average rank position has the 

broadest support and wins a BC election. As CHPV satisfies 



56 Peter Charles Mendenhall and Hal M. Switkay:  Consecutively Halved Positional Voting:  

A Special Case of Geometric Voting 

the two-thirds majority criterion instead, any candidate must 

exceed this higher threshold for victory to be guaranteed. The 

winner in CHPV is determined by the balance of strong 

versus broad support for each candidate. 

Figure 9 displays the consensus bias indices for the five 

major voting systems addressed herein: plurality, CHPV, 

Dowdall, the Borda count, and anti-plurality. For PL ≡ 

GV(0), �- � 0 , its minimum value, whereas anti-plurality 

has the maximum valid value �- � �� # 2� �� # 1�⁄ . For 

BC ≡ GV(→1), we compute �- � �� # 2� �⁄ ; the graph 

demonstrates that there is little difference between BC and 

anti-plurality for large � as measured by the consensus bias 

index. Note that for the anti-plurality and Borda count 

vectors with � � 3 and � � 4 respectively both are balanced 

but, unlike CHPV, they both become markedly unbalanced 

when one or more (clone) candidates are also nominated; see 

section 10. The bias index for CHPV rises rapidly towards its 

asymptotic value of 1 2⁄  as �  increases so becoming ever 

more balanced. In contrast, the Dowdall system does not 

establish a clear tendency towards either polarization or 

consensus. Its �-  rises slowly, approaching one as � 

increases. For � � 8 , Dowdall is more polarized than 

consensual; otherwise, the reverse is true. 

 

Figure 9. Consensus bias indices (CI) versus N for major voting systems. 

Several forms of the CHPV vector are tabulated for small values of �, together with related data for the normalized vectors, 

in table 1. 

Table 1. CHPV vectors. 

Number of candidates Standard CHPV vector Normalized CHPV vector n  op  qp  
2 F1, ��G  �1,0�  1 1 0 

3 F1, �� ,
�
fG  F1, �R , 0G  

f
R  

R
f  

�
f  

4 F1, �� ,
�
f ,
�
rG  F1, Rs ,

�
s , 0G  

��
s   

s
��  

f
��  

5 F1, �� ,
�
f ,
�
r ,

�
�tG  F1, s�u ,

R
�u ,

�
�u , 0G  

�t
�u  

�u
�t  

��
�t  

N i-th component: 
�
�386  i-th component: 

�783��
�786��  

�7�	��
�786��   

�786��
�7�	��  

�786�	
�7�	��  

 

The numerator of Σ (and thus the denominator of both �- 
and �-) in the last row represents the values of a sequence 

that appears three times in the Online Encyclopedia of 

Integer Sequences [8]. 

The general vectors for PL and BC, and both the anti-

vector and conjugate vector versions for anti-plurality, all use 

integer weightings in practical elections to assist counting but 

the Dowdall vector v � �1,1/2,1/3, . . . � does not. Fractions 

such as 1/3 and 1/7 require rounding to a specified number of 

decimal places prior to counting. As full accuracy is not 

practical, errors in candidate ties or rankings in tight contests 

cannot be ruled out however remote the possibility. 

Although the standard CHPV vector v � 	 �1,1/2,1/4, . . . � 
also employs fractions, rounding is never required or 

permitted. Where decimal numbers are used in a manual 

count or binary numbers in an electronic one, the number of 

places after the decimal or binary point needed to represent 

�
  is � # 1 ; see table 2. Alternatively, to avoid fractions 

altogether, the affine equivalent vector �. . . ,8,4,2,1� to v may 

be employed instead. Therefore, full accuracy can always be 

maintained with CHPV and only genuine candidate ties need 

ever occur. 
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Table 2. Decimal and binary values for CHPV fractional weightings. 

w  CHPV weighting xw 
Fraction Decimal Binary 

1 1 1 1 

2 1/2 0.5 0.1 

3 1/4 0.25 0.01 
4 1/8 0.125 0.001 

5 1/16 0.0625 0.0001 

6 1/32 0.03125 0.00001 

9. Case Study: Nauru 2019 

Parliamentary Elections 

On August 24, 2019 a general election was held in the 

Republic of Nauru across all eight multiple-winner 

constituencies to fill the 19 seats in their Parliament. Voting 

is compulsory and each voter must cast a complete 

preferential ranked ballot without truncating or duplicating 

any preferences. The Dowdall method of determining the 

outcome was again employed and the results of this general 

election were published in a report by the Nauru Electoral 

Commission [9]. 

In order to compare the PL, CHPV, BC and Dowdall 

vectors in a real-world scenario, we reran the eight elections 

with the same voter input using the three alternative rules. 

Given the number of candidates that stood in the 2019 

elections, table 3 lists the consensus bias index for each of 

the eight Dowdall contests. For comparison, the 

corresponding indices for the CHPV and BC rules are also 

included. The index for PL is always �- � 0. 

Table 3. Comparative consensus bias indices. 

Constituency N 
Consensus Index (CI) 

Dowdall CHPV BC 

Aiwo 8 0.491 0.487 0.750 

Anabar 6 0.425 0.456 0.666 

Anetan 8 0.491 0.487 0.750 
Boe 5 0.377 0.423 0.600 

Buada 7 0.462 0.475 0.714 

Meneng 9 0.514 0.492 0.777 
Ubenide 12 0.564 0.499 0.833 

Yaren 5 0.377 0.423 0.600 

The bias indices for a given � -candidate PV election 

indicate whether polarized, balanced or consensus candidates 

may potentially be promoted or demoted by the choice of 

election rule. For PL with �- � 0, polarized candidates are 

consistently advantaged. The BC consensus index here 

ranges from 0.6 to 0.833 so benefitting consensus candidates. 

As an essentially balanced system, the �- for CHPV ranges 

narrowly between 0.423 and 0.499; close to its ideal 0.5 

asymptotic value. The �- for Dowdall includes this range but 

extends further at both ends; namely, from 0.377 to 0.564. 

The effect that vector choice has on candidates’ prospects 

is witnessed in the nine-candidate election in the three-seat 

Meneng constituency; see table 4. In the Dowdall row, the 

nine candidates are labelled and listed in the collective rank 

order that resulted from the 2019 election. Using CHPV 

instead, the resultant ranking, including the three winners, is 

unchanged. Note that both these rules have a bias close to the 

balanced value of �- � 0.5  and that the polarized PL and 

consensual BC rules produce significantly different rankings 

and winners. For example, the official second-placed 

candidate (2) and joint winner would have come fourth and 

lost under PL but top under BC. 

Table 4. Comparative candidate rankings for Nauru 2019 Meneng election. 

 Winners Losers CI 

PL 1 3 4 2 6 5 9 8 7 0 
CHPV 1 2 3 4 5 6 7 8 9 0.492 

Dowdall 1 2 3 4 5 6 7 8 9 0.514 

BC 2 4 5 7 1 3 6 8 9 0.777 
 1 2 3 4 5 6 7 8 9  

 Rank position (i)  

In figure 10, the preference tally for each of the nine 

preferences is plotted for the three top-ranked candidates (1, 

2, and 3) in the Dowdall election. Candidates 1 and 3 may be 

described as more polarized than consensual as they each 

attracted both a large share of first preferences, a large share 

of last preferences but relatively few mid-rank ones; a key 

signature of polarization. This is confirmed in the rerun 

results as they both win under PL but both lose under BC; see 

table 4. Candidate 2 however may be described as more 

consensual than polarized as this person gained a much larger 

share of the higher preferences (∑ �(
u
?� ) and a much smaller 

share of the lower ones ( ∑ �(
g
?t ) relative to the two 

polarized candidates. Attracting above-average support 

across a broad range of high-rank preferences is a hallmark 

of consensus. Again, this is borne out in the rerun outcomes 

as candidate 2 wins outright under BC but loses under PL; 

see table 4. 

 

Figure 10. Preference tallies awarded to candidates 1, 2 and 3. 

As signaled by the consensus indices in table 4, the 

consensus candidate 2 is promoted in rank and the polarized 

candidate 3 is demoted as the bias of the vector shifts away 

from polarization. Note too that candidate 4 is only displaced 

from a winning rank position under the essentially balanced 

CHPV or Dowdall vector. In contrast, a candidate in the 

Anetan constituency only advances to a winning second 

place under these same rules. So, a balanced vector may 

promote or demote a candidate’s rank position in relation to 

either PL or BC depending on the type of support awarded to 

its competitors. 

Regarding system bias, both the CHPV and Dowdall 

vectors are intermediate between BC and PL; see figure 9. In 

this case study, the winners and the resultant candidate 

rankings using CHPV are identical to those in all eight 
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Dowdall elections with just two exceptions. In Aiwo and 

Ubenide, the two losing candidates ranked immediately 

above bottom place are reverse-ranked. However, in Boe, the 

two winning ones are reverse-ranked in the 2022 general 

election [10]. Here, CHPV and Dowdall differ as to first 

place. So, is there a justification for choosing one of these 

two vectors over the other? In other words, is a harmonic or 

geometric progression of weightings preferable? 

In Nauru, Dowdall candidate tallies are rounded to three 

decimal places. As shown in section 8, CHPV tallies never 

require rounding so full accuracy is always achievable. If the 

primary desire is to employ a balanced voting system with a 

consensus index of ideally 0.5, then CHPV has further 

advantages over Dowdall. Except for the eight-candidate 

contests, the �-  for CHPV is always closer to 0.5 than 

Dowdall. Also, when compared to Dowdall, this CHPV 

index varies much less as a function of � where, as in these 

elections, � � 4. This is important since the choice of vector 

is normally selected, as here, before the number of candidates 

is known. 

As regards strategic candidate nominations, Dowdall and 

CHPV perform quite differently. Such nominations occur 

when one or more ‘clone’ candidates are added to the ballot; 

typically for the purpose of manipulating the outcome. In PL 

≡ GV(0), adding a clone may take first preferences away 

from another strong candidate such that their common 

opponent wins instead. This is called vote-splitting. In 

contrast, with BC ≡ GV(→1), adding a clone of another 

candidate may defeat their common opponent by pushing 

them down in rank position to reduce their tally. This is the 

other extreme and is known as teaming. The polarized GV(0) 

vector is vulnerable to vote-splitting but not teaming while 

the reverse is true for the consensual GV(→1) vector. In 

smoothly progressing the spectrum from GV(0) to GV(→1), 

the effect of vote-splitting diminishes while that of teaming 

grows since this progression is accompanied with the 

vector’s �- ranging from zero towards unity. 

For CHPV, by adding y clone candidates, � is increased 

by y ; thereby making this vector more balanced and the 

likely effect of strategic candidate nominations more 

uncertain and riskier. For Dowdall, such an addition may 

entail more than eight candidates in total. Every extra 

candidate added beyond � = 8 makes this vector ever more 

unbalanced, consensual, and increasingly prone to teaming as 

its �- heads towards unity. CHPV has the advantage over the 

Dowdall method in respect of the above four properties. 

10. Conclusions 

The set of valid PV vectors for an election with � 

candidates is � -dimensional. Even if attention is solely 

confined to the unique normalized member of each affine 

equivalence class, the resulting space is still (� − 2) -

dimensional. According to Saari, this “curse of 

dimensionality” is “the primary cause for all voting 

paradoxes” [11]. He also exhorts researchers to “Find 

appropriate properties and relationships to eliminate 

subjectivity in selecting a rule” [11]. Given the vast array of 

available PV vectors from which to choose, one basis on 

which to do so is the desired bias of the electoral system 

towards certain types of candidates over others. The bias 

indices developed here facilitate this choice. 

The plurality and Borda count methods are well 

established. The consensus index for the plurality vector is 

zero while it tends towards unity - the opposite extreme - for 

a Borda count election. The Geometric Voting vectors that 

evolved from the derivation of the bias indices allow the 

spectrum between these two extremes to be explored. Using 

the common ratio as the sole variable, this system bias 

spectrum can be smoothly interpolated for any given number 

of preferences. GV(r) vectors are hence valuable analytical 

tools. 

Plurality is biased in favor of candidates with strong first-

preference support whereas the Borda count instead favors 

ones that attract broad high-ranking support. Selecting an 

intermediate vector where neither strong nor broad support 

dominates the other may seem like an arbitrary choice. 

However, using GV vector analysis and requiring a bias 

favoring neither extreme, the Consecutively Halved 

Positional Voting vector is established as the optimum 

balanced one; especially when the number of candidates 

standing is unknown prior to vector selection or large after 

nominations close. 

CHPV is a rival to the Dowdall method that also uses an 

intermediate vector; one that employs a harmonic - not 

geometric - progression of weightings. Unlike Dowdall, no 

rounding need occur in a CHPV count. Also, for the CHPV 

vector, its bias index is normally closer to the ideal of one 

half and it varies less than for Dowdall as more candidates 

beyond four are nominated. Fourthly, CHPV performs 

differently to Dowdall regarding strategic candidate 

nominations. Adding additional candidates makes the 

Dowdall vector more consensual and, hence more likely, 

increasingly prone to teaming whereas it makes the CHPV 

one more balanced. This balance may extend to the 

conflicting effects of vote-splitting that afflicts polarized 

elections and teaming that afflicts consensus ones. As a 

vector that is intermediate between these two extremes, 

CHPV may counterbalance these two opposing effects thus 

discouraging cloning attempts. This is a major area for 

further study. With reference to the Gibbard-Satterthwaite 

theorem on strategic voting, Saari highlights the subsequent 

search “for incentives and strategy-proof mechanisms, which 

encourage sincere reactions” [12]. This is another area for 

more research as CHPV, being a balanced vector, may 

discourage strategic voting more so than unbalanced ones. 

In comparison to plurality, anti-plurality, the Borda count 

or the Dowdall method as surveyed in a variety of sources [2, 

5, 13-15], CHPV is a viable and balanced alternative 

positional voting system. 
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