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Abstract: The article provides an accurate analytical approximation of the expressions of the known results of the electronic 

theory of reflection of metals, i.e. for the spectral and integrated reflectivity of ρ��  and ���  (Drude and Hagen-Rubens 

formulas, as well as the formulas of Ashkinass, Foote, Eckert and Drake, which are fragments of power series). Compact 

closed expressions for ρ����� and ������ are obtained, and published experimental data on the reflectivity of the polished metal 

surface in new coordinate systems are processed and analyzed: (lnρ��)
−2∼λ and ln(���)

−1∼ T. It turned out that the experimental 

data on ρ����� in the new coordinates clearly “lie” on the straight lines, which in the general case do not pass through the 

origin, which required introducing into the expression ρ����� a new parameter − λо, taking into account the difference between 

the "optical" conductivity σо(ω) from the electrical σе, where λо constant specific to each of the metal (for example, Ag, and 

Al: λо>0, for Ni and W: λо= 0, for Au and Cu: λo<0). In obtaining the final formula for ρ����� a new mathematical derivation 

scheme was used, starting with an analysis of a pair of equivalent expressions of the complex refractive index of the metal — 

much more justified and brief. 

Keywords: Electronic Theory of Reflection of Metals, Normal Spectral Reflectivity, Optical Conductivity,  

Approximation of Power Series, Processing of Experimental Data 

 

1. Introduction 

The modern theory of the optical properties of metals is 

based on complex electronic, kinetic, statistical, and quantum 

models. Historically, the first theory of reflection was 

developed by Drude, [1], based on the model of "free" 

electrons. However, a significant discrepancy between the 

calculation results ελ⊥ according to the Drude formula and 

experience led to the fact that, firstly, they began to refine it 

(Hagen and Rubens) by introducing the second and third 

members of the series, and secondly, the second version of 

the electron model (Drude-Zener model [1, 2]), in which a 

new concept of the “optical conductivity” of the metal σо was 

introduced, taking into account the well-known fact of the 

dependence of the conductivity on the wavelength of light λ. 

But even this was not enough to explain the very significant 

difference between the theoretical calculation and 

experimental data ελ⊥ in the near and middle part of the 

infrared region of the spectrum. Roberts [3, 4] suggested that 

valence electrons are divided into two types (s and d), each of 

which creates its own optical conductivity, depending on the 

wavelength differently. On this basis, Edwards et al. [5, 6] 

created a method for calculating the “boundary” optical 

properties of good conductors (very complex, including a 

number of multi-constant approximations) − for most metals 

in the infrared range of the spectrum, which is currently 

widely used in practice [7]. 

The electronic model of the optical properties of metals 

adjoins the skin-layer model [8], obtained on the basis of 

kinetic theory. However, the solution obtained in its 

framework for ελ⊥ is also found in the form of the first terms 

of the power series, which leads to a low accuracy in 

calculating the reflectivity. 

Standing apart is the metal reflection model developed by 

Dmitriev on the basis of statistical theory [9]. Although it 

well explains some optical effects (for example, the inversion 

of the spectral emissivity of metals at the X-point), but it has 

not received distribution, since it is not connected with 

electronic models, at least as a special or limiting case. 

Finally, a quantum theory of the optical properties of 



16 Konstantin Ludanov:  Refining the Results of the Electronic Theory of Reflection of Metals  

 

metals was developed [8, 10], which explains the absorption 

of their surface not only by transferring radiation energy to 

the ion lattice by field-accelerated conduction electrons, but 

also due to quantum transitions in the visible and ultraviolet 

regions. However, the contribution of quantum effects in the 

infrared range was insignificant (less than 10%), [11]. 

2. Literature Review 

Drude model. The electronic model of metal reflection 

according to Drude [1] suggests that all valence electrons of 

the metal are free, that is, practically unconnected with the 

neighboring ions of the crystal lattice and are “electron gas”. 

As a result of solving the problem of the interaction of the 

electromagnetic field with the "electron gas" of a metal, 

Drude obtained the first (linear) approximation for the 

spectral emissivity ελ⊥ in the direction normal to the surface 

(according to Kirchhoff’s law, it is identically equal to 

absorption capacity: ελ ≡ αλ) ελ⊥ ≅ 0,365√(re/λ). The main 

advantage of this formula to Drude is that it does not contain 

unknown constants: it was possible to connect the 

theoretically determined quantity ελ⊥ with only one quantity - 

the electrical resistivity re (Ohm∙mm
2
/m) − a property well 

studied for most metals and accurately measured over a wide 

temperature range. The Drude model allows one to calculate 

ελ⊥ in the λ> 10μm region with reasonable accuracy [12]; 

however, it is very inaccurate in the middle and near infrared 

regions. This caused attempts to refine it by Hagen and 

Rubens [9], who received a second, and then the third term of 

the power series to express the variance ελ⊥= ϕ(λ): 

ελ⊥= 0,365√(re/λ) – 0,0667(re/λ) + 0,0091√(re/λ)
3
        (1) 

However, the inclusion of three members of the series did 

not lead to satisfactory agreement between the calculation by 

the formula and the experimental data on average, and even 

more so in the near infrared range [12]. 

Drude-Zener model. This model takes into account the 

well-known fact that the electrical conductivity of a metal for 

direct current differs from its conductivity with respect to 

high-frequency alternating current [1, 2]. In this case, 

conduction electrons with a certain inertia lag behind the 

field oscillations in phase and the metal conductivity 

included in Ohm's differential law (j = σE) becomes 

complex. Drude and Zener wrote down the complex 

conductivity σ in the form σ = σе∙ехр(i·ω/γ) and obtained in 

scalar form the expression for “optical conductivity”: σо = 

σе/(1 + ω2/γ2
), where γ − decrement of attenuation. But even 

this introduction did not significantly improve the accuracy 

of the calculation of ελ⊥. 

Roberts model. It also appeared in the framework of the 

electronic reflection model [3], and, in particular, develops 

the Drude – Zener interpretation in terms of the optical 

conductivity of the metal. However, in the Roberts model, 

valence electrons are no longer “free”, but “quasi-free”. 

Moreover, not one, but two types of valence electrons (s and 

d) are introduced with different relaxation times τi. And each 

one creates its own optical conductivity: 

σ1о = σе/(1 + iλ1/λ),σ2о = σе/(1 + i·λ2/λ)             (2) 

In a scalar form, the total optical conductivity is expressed: 

σо= σе/[1 + (λ1/λ)
2] + σе/[1 + (λ2/λ)

2] +σ∝          (3) 

Later Roberts [4] also introduced the third group of 

carriers with conductivity σ3, and also took into account 

corrections for resonance phenomena. Therefore, the method 

of calculating the optical properties of metals (the method of 

Edwards et al. [5, 6]), created on this basis, presented, for 

example, in [7] turned out to be very complicated, because 

included several empirical constants, which in the calculation 

must first be determined on the basis of experimental data. 

3. Formulation of the Problem 

Analysis of publications shows that the electronic theory 

of reflection of metals, although it began to be developed 

first, has not yet been completed. First, the expressions for 

the spectral and integrated emissivity are fragments of the 

power series (Drude, Hagen-Rubens, etc. formulas for ελ⊥ 

and the Ashkinass, Eckert-Drake, and Fout formulas forε⊥). 

And every fragment of a series very inaccurately reflects its 

sum, which generally represents a certain function that 

decomposes into this series (this point of view was first 

expressed by Euler [13]). Thus, there is the problem of 

finding a function that would accurately approximate the sum 

of a series by its fragment. A good basis for such a search is 

given by the Padé approximation [13, 14]. However, it 

involves approximation only in the form of rational fractions 

of polynomials, and the form of the chosen function is often 

dictated by the physical meaning of the problem. 

Secondly, there is a certain arbitrariness in the 

“construction” of the formulas for the optical conductivity of a 

metal, which is characterized by the presence of a number of 

“theoretically substantiated” expressions for complex 

conductivity: 1) σо= σеехр(iω/γ) and 2) σо = σе/(1 + iωτ), also 

for the conductivity σо in scalar form: 3) σо= σе/[1 + (ω/γ)
2] 

and 4) σо= σе/[(1 + ω2τ2
)

0,5
− ωτ], [8]. Thus, in this case too, 

there is the problem of finding a new, more correct expression 

for the optical conductivity of the metals σ(ω). And finally, 

thirdly, the situation that has developed with the results for 

integrated reflectivity is similar to the situation with spectral 

results for ρλ⊥. Indeed, the well-known expressions for the ε⊥ 

also represent fragments of power series [9, 15]. 

In this regard, the aim of this work is to refine the results 

of the electronic theory of reflection of metals, which will 

solve the above problems and allow us to create the 

foundations of a new (more accurate and correct) method for 

calculating "boundary" optical properties of metals (ρ, ε, а) 

for the infrared region of the spectrum. 

4. Research Results 

4.1. Derivation of the Closed Expression ρλ⊥ for Metals 

It is known that the whole complex of optical and 
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electrophysical properties of the metals [8, 10] is 
concentrated in two equivalent expressions for the complex 
refractive index N: 

N = n – i·k ≡ √(∋−i∙2σ/ν)                      (4) 

The spectral reflectivity of an optically smooth metal 
surface is expressed through N as follows: 

ρλ⊥ = |N − 1|2/|N + 1|2                         (5) 

If we substitute the first expression for N into this formula 
and square the corresponding modules, then we can obtain 
the well-known Beer’s formula: 

ρλ⊥= [(n – 1)2 + k2]/[(n + 1)2 + k2]                (6) 

For metals (i.e., very good conductors) it was established 
[8, 10] that the prevailing part of the energy of the field 
penetrating through their surface when irradiated with light 
has a magnetic nature (for dielectrics σ = 0 and this ratio is 
50% to 50%). Let us analyze the expression of this ratio: 

µH2/(∋E2) = √[1 + 4(σ/∋ν)2]                   (7) 

Since for the metal the left-hand side significantly exceeds 
unity, it is quite possible to write that σ/ν >> ∋. And in this 
case, the quantity ∋ under the root sign in the second 
expression N can simply be neglected. 

The expression for the complex refractive index N (taking 
into account that √(− 2i) = 1 −i) takes the following form: 

N ≅√(− 2iσ/ν) = (1 −i)√(σ/ν)                    (8) 

Comparing the result with a second expression for N, we 
conclude that under the condition σ/ν >> ∋ we have n ≅ k ≅ 
√(σ/ν). And the Bera formula for metal in this case will look 
like this: 

ρλ⊥= (2n2 – 2n +1)/(2n2 + 2n +1)                (9) 

Since this expression is quite complex, only the first terms 
of its expansion in a series in negative powers of n are used 
[16] and, since for metals n > 1, this expansion takes the 
following form: 

ρλ⊥= 1 – 2n−1 + 2n−2 – n−3 +…              (10) 

Drude, Hagen and Rubens used, respectively, two, three, 
and then four members of this decomposition to obtain their 
results (it is given above). Moreover, fragments of power 
series were also obtained, while compact closed expressions 
are important for applications, which approximate the sum of 
the series quite accurately and reflect the physics of the 
phenomenon. 

Therefore, as early as in [17], the author analyzed the 
expansion structure for ρλ⊥(n) and found that the best 
approximation for the sum of the reduced series (10) is the 
exponent: 

ехр(−2/n) = 1 – 2n−1 + 2n−2 – 1,33n−3 +…,            (11) 

the expansion of which also gives an alternating power series 
that differs from the expansion in a series of Beer's formula 
only by the value of the coefficient in the fourth term. Using 
this fact, we obtain a new closed expression of spectral 
reflectivity: 

ρλ⊥= ехр(−2/n)                                (12) 

Substituting instead of the quantity n its expression found 
above, we obtain: 

ρλ⊥= exp[−2√(ν/σ)]                           (13) 

And if we substitute the resistivity and wavelength instead 
of conductivity and frequency, then we can finally write: 

ρλ⊥ = ехр[−2√(re/30λ)] = ехр[−0,365√(rе/λ)]        (14) 

The expression obtained here is not only sufficiently 
accurate and compact, but also corresponds to the physics of 
the reflection phenomenon, since it correctly reflects the 
asymptotic behavior at λ→0, in contrast to the Drude 
formulas and others. However, when trying to present 
experimental data from directories in the coordinate system 
(lnρλ⊥)−2∼ λ, where they were supposed to “lie” on the 
straight lines passing through the origin, problems arose. It 
turned out that the experimental points can indeed be 
described by linear dependencies, but the lines obtained for 
various metals in the general case do not pass through the 
origin. Therefore, the resulting expression (14) also requires 
refinement. 

4.2. A New Expression for ρλ⊥Metal, Taking into Account 

the Optical Conductivity σо(ω) 

The presence of several expressions σо both in complex 
and in scalar form indicates that this question has not been 
finally resolved. An analysis of experimental data shows that 
in most cases the optical conductivity is less than the 
electrical conductivity for direct current, which is why in the 
Drude-Zener formula σо≤σе. However, in some cases [8], for 
example, for alkali metals, σо≥σе. That is why formulas of 
the Drude-Zener type for representing optical conductivity 
were not acceptable. 

First, the generalized expression for optical conductivity 
should be based on the phenomenological Maxwell relations 
[8], that is, the polarization current should also be taken into 
account: 

j = σE + α(∂E/∂t)                           (15) 

Usually, this expression of the sum of the conduction and 
polarization currents is presented in the form of Ohm's law in 
differential form: 

j = j(σ)+j(α) = σoE,                       (16) 

and for optical conductivity in scalar form, we can write: 

σo(ω) = σе + F(γ,α,ω),                   (17) 
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which on the contrary gives only σо≥σе, which is also 

unacceptable. 

Therefore, a different approach to solving this problem is 

needed. If we consider that σо is not very different from σе, 

then a fairly accurate estimate of σо(ω) can be obtained by 

expanding its expression in the Taylor series in the variable 

ω, and assuming that the resulting series is fast converging, 

use only the first two terms: 

σo(ω) = σo(0) + (∂σo/∂ω)⋅ω + … ≅σе(1 + f⋅ω),          (18) 

where σо(0)=σе, and regarding the coefficient f = (∂σo/∂ω)/σе 

we can definitely say that it depends on the damping 

decrement γ of valence electrons and on the polarizability of 

the lattice ions α: 

(∂σо/∂ω)/σе = f(γ,α)                             (19) 

Potentially here it can be either positive (σо>σе), so 

negative (σо<σе), or equal to zero (σо = σе). Substituting this 

result in the expression ρλ⊥, we obtain the final formula: 

ρλ⊥= ехр{−√[re/λ∙(1+f⋅ω)∙С1]}=exp{−√[re/(λ+λo)∙С1]},   (20) 

where σо is the only new parameter reflecting the influence 

of the damping decrement of the conduction electrons γ and 

the polarizability of the crystal lattice ions on α in the 

framework of the concept of “optical conductivity” (here 

σо/ν→σе∙(λ + λо)), С1 = 7,5. 

Thus, here, in the framework of the electronic theory of 

reflection of metals, the author obtained a new expression 

for the normal reflectivity of the surface of metals - taking 

into account the presence of optical conductivity of their 

surface: 

ρλ⊥= exp{−0,365√[re/(λ+λo)]},                    (21) 

Processing of experimental data for ρλ⊥ [15, 18, 19] 

obtained with normal reflection of a polished metal surface in 

the coordinates (lnρλ⊥)
−2∼ λ showed that they very clearly 

obey the linear dependence. In most cases, these straight 

lines do not pass through the origin and cut off individual λo 

values for each metal on the ordinate axis, which 

convincingly testifies to the exact closed expression for ρλ⊥ 

found above, taking into account the new relation for the 

optical conductivity σо. 

The data obtained for some metals (Me) are presented in 

the tables below. 

Table 1. Data obtained for some metals (Me). 

Me Al Ag Ni W Au Cu 

λ0μm +5,8 +2,3 0 0 − 0,6 −1,0 

 

Me Fe Rn Ti Pt Zn Cr 

λ0μm −1,8 −1,9 −2,0 −2,2 −2,5 −4,6 

If, as the lower boundary λmin of the spectral range in 

which the electronic theory of metal reflection works, it is 

quite reasonable to use λХ (the inversion point for the 

dispersion of the reflectivity of the surface: for tungsten λХ = 

1.28 μm and for rhenium λХ = 1.0 μm), then as the upper 

boundary of the range λmах it is quite obvious − the 

intersection point of the curve ρλ⊥= exp{−0,365√[re/(λ+λo)]} 

with line (ρλ⊥)max = const for the region λmах< λ < ∝. The 

values of the coordinates of the intersection points 

(boundaries of neighboring regions λmах) for some metals, 

established as a result of processing the experimental data, 

are presented in Table 2. 

Table 2. A result of processing the experimental data. 

Me Al Ag Ni W Au Cu 

λmax,μm 3,0 1,0 2,0 2,0 2,0 1,0 

(ρλ⊥)max >0,987 >0,99 0,98 0,97 >0,987 0,975 

 

Me Fe Rn Ti Pt Zn Cr 

λmax,μm 3,0 2,0 6,0 3,0 3,0 6,0 

(ρλ⊥)max 0,90 0,96 0,92 0,96 0,98 0,98 

4.3. Integral Reflectivity of Metal ρ⊥(T) 

The integral emissivity ε⊥ of the polished metal surface in 

the normal direction is obtained by integrating the product of 

the expression ελ⊥ and the Planck function for the radiation of 

the blackbody over the entire spectrum. Using G-functions, 

Ashkinass integrated the linear Drude approximation [16] 

and established: 

ε⊥≅ 0,576√(rеT),                               (22) 

a result that is suitable only for an approximate forecast, and 

not for an accurate calculation. Eckert and Drake refined the 

linear expression by integrating the second term [20] and 

obtained: 

ε⊥= 0,576√(rеT) – 0,124(rеT)                   (23) 

Foot [9], by analogy with Eckert and Drake, got the third 

term in the expression above and recalculated the coefficients 

of the series taking into account the new values of both 

constants in the Planck formula − c1 and c2: 

ε⊥= 0,578√(rеТ) – 0,179(rеТ) + 0,044(rеТ)         (24) 

The author of this article earlier [17] for expression (23) 

also found an exact and compact approximation (taking into 

account ε⊥≡ 1 − ρ⊥) in the form of the Newton binomial: 

ρ⊥= {1 −√[(reT)/48]}
4
 = 1 −√[(reT)/3] + (reT)/8 – …    (25) 

To verify the accuracy of the proposed approximation, it is 

logical to present the experimental data on the dependence of 

the integrated reflection of the polished metal surface on ρ⊥ 

in the coordinates (ρ⊥)
0,25

~ √(T). However, as was shown 

above (in Section 4.2), the assumptions adopted in this 

integration are not entirely correct, since they “work” only in 

the range λX< λ ≤ λmax. In the region λ < λX, quantum laws 

already work, and for λ > λmax the reflectivity of the metal 

surface is practically independent of the wavelength andρ⊥ 

= const. Therefore, in this case, the expression for ρ⊥(λ) does 

not integrate in quadratures. In this situation, the most 

optimal solution is approximation by a closed expression 
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within the exponent. This approximation in [18] was 
proposed by Helfgott in the form: ε⊥≅ 1 – exp(−a∙T), where 
a (K−1) is an individual value for each metal. 

By the way, within the framework of the Ashkinass 
approach, it is also possible to obtain an exponential 
expression for ρ⊥(T) based on the theory of approximating 
the sum of a series [14] in the following form: 

ρ⊥ = exp{−√[(reT)/3]} = 1 – 0.5773√(reT) +...,         (26) 

and try to process the data on the reflection of metals in the 
coordinates (ρ⊥)0,25~ √(T). However, it is known that for 
many metals electrical resistivity re (Ohm∙cm) under the 
condition T > 300 K is directly proportional to the absolute 
temperature: re(T) = (re)о∙(T/273) [16]. In this case for ρ⊥ 

there should be a linear dependence in the coordinates 
ln(ρ⊥)−1∼ T. Indeed, analysis of published data [12] shows 
that, for example, the integrated reflectivity of nickel and 
platinum in the temperature range 500 – 1300 K accurately 
obeys a linear dependence, and the resulting straight lines 
again do not pass through the origin, and experimental data 
are generalized by an exponential expression of the form: 

ρ⊥ = ехр[−a∙(T − To)],                           (27) 

where taking into account (25) a ~ √(re)о. For example, for 
Ni: To = 80 K, a = 1.5∙10−4 (K−1) and for Pt: To = 194 K, a = 
1.34∙10−4 (K−1). 

5. Discussion of Results 

An analysis of the experimental data on the normal 
spectral reflectivity of the polished metal surface within the 
framework of the new coordinate system showed that the 
electronic theory of reflection "works" only in a rather 
narrow range of wavelengths: λХ<λ<λmах of the middle and 
far infrared ranges, and accordingly a very small change in 
spectral reflectance: ρmax>ρλ⊥> 2/3. The presence of a 
maximum value ρmax of a smaller unit follows from the 
analysis of experimental data (reference [19]) and does not 
“fit” into the representations of the electronic model, since 
limρ→1 follows from it for λ→∝. As the lower boundary of 
this range (ρ = 2/3), the result is also used not from the 
electronic model, but from the Dmitriev statistical model. If 
for the lower boundary ρ = 2/3 there is a well-defined 
interpretation of Dmitriev (this is the reflectivity at the X-
point), then for the upper boundary ρmax there is no justified 
interpretation. 

The exponential expression obtained in this work for ρλ⊥, 
firstly, is much more accurate than the Drude and Hagen- 
Rubens formulas approximates the Beer's formula for metal 
(9), since it is known [13] that the sum of the discarded terms 
of the alternating power series is less than its first discarded 
terms, and the accuracy of the approximation used can be 
estimated as follows: ∆ < 1/3n3 (where for ρ ≥ 2/3 from the 
Beer's formula n ≥ 5), secondly, it includes the only new 
parameter λо, individual for each metal (and λо can be 
positive, negative and equal to zero). 

It is one parameter λо, and not two (λ1 and λ2), like 
Roberts [3], that takes into account the influence of an 
electromagnetic wave (light incident on the surface) on the 
electrons of the metal: on valence (quasi-free) electrons - 
through the damping decrement γ, and to bound electrons - 
through the polarizability of ions α. 

Therefore, it can be argued that the “one-electron” scheme 
in the framework of the electronic reflection model (in which 
all conduction electrons behave identically and are quasi-
free) quite accurately and correctly describes the dispersion 
of the normal reflectivity of metals, and the use of the “two-
electron” Roberts scheme [3, 4] completely unreasonable. 
Thus, the rather complicated method for calculating the 
optical characteristics of metals developed by Edwards et al. 
[5, 6] based on the Roberts scheme may well be replaced by 
a very simple and reasonably justified calculation method ρλ⊥ 
based on exact closed analytical solutions obtained in this 
paper. 

An estimate of the “gap” between λХ and λmin (the lower 
boundary of the approximation range and the point X) using 
the example of tungsten, for which λХ = 1.28 μm and λmin = 
2.3 μm, showed that it is small and is δλ = 2.3 − 1.3 = 1 μm. 
Thus, it can be assumed here that this “gap” is small for other 
metals and that most of the infrared range (up to λmax) is 
accurately described by the dependences found in the work. 

An analysis of the experimental data [19] for the normal 
spectral reflectivity of platinum at room temperature and at T 
= 1125 K showed that λо depends on temperature rather 
weakly (in the first case λо= 2.2 μm, and in the second λо = 
1.4 μm), decreases with increasing temperature, and the form 
of the formula ρλ⊥ = ϕ(Т) is determined mainly by the 
temperature dependence of the electrical resistivity. We can 
assume a similar dependence λо(Т) for other metals. 

6. Findings 

A compact closed analytical expression of the spectral 
reflectivity of a polished metal surface in the normal 
direction with a new ratio for “optical conductivity”, 
obtained for the first time in this work, not only qualitatively, 
but also quantitatively correctly describes the published 
experimental data and can become the basis of a new 
calculation method “boundary "optical properties of metals, 
provided that a data bank is created for only one parameter - 
λо(Т). 

The obtained expression describes with sufficient accuracy 
the dispersion of the spectral reflectivity of metals in the 
infrared region of the spectrum (because its domain is 
λХ<λ<λmax, and the range is 2/3 <ρ <ρmax). The data from this 
area is usually used in pyrometric measurements to determine 
the temperature of a metal surface in engineering and 
scientific research, so the results are very relevant. For the 
purpose of pyrometry, it is normal optical characteristics 
(ε⊥or ρ⊥, [20]) that are important, since for the metal surface 
only radiation in the normal direction is not polarized. 

Attempts by Ashkinass, Eckert-Drake, and Foote to obtain 
integral characteristics for the reflectivity of metals by 
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integrating the Drude formula in the full radiation range (0 

<λ< ∞) are obviously in accurate, because they do not take 

into account the fact that the laws of the electronic theory of 

metal reflection "work" only in a very limited part of the 

spectrum: λХ<λ<λmax. 
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