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Abstract: The diluted magnetic semiconductor, (Ga, Mn) N has recently attracted intense research interest for the purpose of 

spintronics application. The material is believed to circumvent the difficulty of combining data processing and mass storage 

facilities in a single crystal besides solving non-volatility problems. The concentration x, of Mn that substitutes for a fraction of 

Ga in the compound is thought to contribute a large concentration of magnetic moments and holes. The material studied is 

focused on dilute magnetic semiconductors (DMS) like Ga1-XMnXN that play a key role in semiconductor spintronics. Due to 

their ferromagnetic properties they can be used in magnetic sensors and as spin injectors. The basic problems for applications 

are, however, the relatively low Curie temperatures of these systems. Therefore, we focus on the understanding of the magnetic 

properties and on a reliable calculation of Curie temperatures from first principles. We have developed a theoretical framework 

for calculating critical temperatures by combining first principles calculations and in terms of the Ruderman–Kittel–Kasuya–

Yosida quantum spin model in Green’s function approach. Magnetic properties of the group-III nitride semiconductors are 

introduced here with basic material parameters (temperature, concentration, heat capacity, etc. Temperature dependencies of 

the spin wave specific heat, inverse magnetic susceptibility and reduced magnetization are determined. Therefore, the 

dependence of the Neel temperature on the manganese ion concentration is linear thus for our calculation the highest Neel 

temperature obtained T=146.3k within the concentration of 0.2. 
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1. Introduction 

Background and Justification 
In recent years, considerable work has been devoted to the 

study of diluted magnetic semiconductors. [1] Semiconductor 

physics and magnetism are established subfields of 

condensed-matter physics that continue to reveal a rich variety 

of unusual phenomena, often in new types of solid-state 

materials. [2]. Magnetic orders when it is present, has a large 

impact on other material properties including transport and 

optical properties. [3] In both semiconductor and magnetic 

cases, sophisticated and economically important technologies 

have been developed to exploit the unique electronic 

properties mainly for information storage and retrieval in the 

case of magnetism. The realization of materials that combine 

semiconducting behavior with robust magnetism has long 

been a dream of material physists [4]. As technology advances, 

the number of semiconductors that are used in technology 

steadily increases. Indeed many innovations have arisen as a 

result of using new materials and their heterostructures. Thus 

while silicon, gallium arsenide and indium phosphide have 

been most widely used, other materials like indium arsenide 

(InAs), indium nitride (InN), gallium nitride (GaN), zinc 

oxide (ZnO) etc., are finding important uses as well. It is 

important to recognize that the ability to examine fundamental 

physics issues and to use semiconductors in state of the art 

device technologies depends critically on the purity and 

perfection of the semiconductor crystal [5]. Transition metal 

doped GaN finds applications in emerging fields of 

semiconductor spin transfer electronics (spintronics) which 

exploit the spin of charge carriers in semiconductors [6]. 

Based on this concept, some new class of devices available are 

spin transistors operating at very low powers for mobile 

applications, optical emitters with encoded information 

through their polarized light output, fast non-volatile 

semiconductor memory and integrated 
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magnetic/electronic/photonic devices. The successful 

fabrication of the blue light III-IV nitride semiconductor laser 

was demonstrated [7].  

 Optical measurements, in connection with a theoretical 

analysis of the spectroscopic data; provide a very useful tool to 

analyze impurities in wide-gap semiconductors. Here, we will 

concentrate on GaN: Mn in zinc-blende structure. GaN in a 

cubic (zinc-blende) phase can be grown epitaxially on cubic 

SiC or GaAs. It exhibits a number of very appealing properties 

for device applications: It has a smaller band gap than the 

wurtzite phase (by 0.2 eV), it can be easily cleaved, and it has 

a higher saturated drift velocity [8].  

Among all III-nitride semiconductors, gallium nitride (GaN) 

possesses several remarkable physical properties that make 

them particularly attractive for reliable solid state device 

applications. It is a wide band gap (3.4 eV) material having 

low dielectric constants with high thermal conductivity 

pathways. It exhibit fairly high bond strengths and very high 

melting temperatures [6]. 

The low solubility of Mn in III-V semiconductors was the 

main barrier to fabrication and it has only recently become 

possible to grow such materials using low-temperature 

molecular beam [4]. Ferromagnetic semiconductors within 

TM elements have great impact and potential for realization of 

the semiconductor spintronics in the next generation of 

high-speed, high-density and low power electronics [9]. 

The electrons and holes are thermally activated and in a 

temperature range, in which the charged carriers contributed 

by the impurities dominate, the semiconductor is said to be in 

the extrinsic temperature range, otherwise it is said to be 

intrinsic. Over a certain temperature range, donors can add 

electrons to the conduction band (and acceptors can add 

holes to the valence band) as temperature is increased. This 

can cause the electrical resistivity to decrease with increasing 

temperature giving a negative coefficient of resistance as 

cited by [10, 4].  

Semiconductors have attracted extraordinary interest as the 

active elements in a wide range of devices including diodes, 

transistors, logic elements, single-electron transistors, 

optoelectronic devices, spintronics and sensors [11].  

Essentially all of these devices are based on semiconductor 

structures which provided the stages for exploring questions 

of fundamental physics. As technology advances, the number 

of semiconductors that are used in technology steadily 

increases. Indeed many innovations have arisen as a result of 

using new materials and their heterostructures. Thus while 

silicon, gallium arsenide and indium phosphide have been 

most widely used, other materials like indium arsenide 

(InAs), indium nitride (InN), gallium nitride (GaN), zinc 

oxide (ZnO) etc., are finding important uses as well. It is 

important to recognize that the ability to examine 

fundamental physics issues and to use semiconductors in 

state of the art device technologies depends critically on the 

purity and perfection of the semiconductor crystal [12]. 

Among all III-nitride semiconductors, gallium nitride 

(GaN) possesses several remarkable physical properties that 

make them particularly attractive for reliable solid state 

device applications. It is a wide band gap (3.4 eV) material 

having low dielectric constants with high thermal 

conductivity pathways. It exhibit fairly high bond strengths 

and very high melting temperatures. The large bond strengths 

could possibly inhibit dislocation motion and improve 

reliability in comparison to other II-VI and III-V materials. In 

addition, the nitrides resist chemical etching, tolerate 

radiations and therefore, allow GaN-based devices to be 

operated in harsh environments. GaN is also a suitable 

candidate for spintronics application as the mature process 

technology makes it easy for doping magnetic elements into 

its matrix to induce spin polarization [13]. 

The GaN based p-n junction LED emission wavelengths 

were in the range of 370-390 nm, together with deep level 

emission at 550 nm. There are two basic options. The first 

method would be colour mixing through integration of red, 

blue and green LEDs in the same package. The second is 

colour conversion through the use of a phosphor or organic 

dye inside the package to convert the blue light from a GaN 

based LED into white light [12]. Traffic lights using 

InGaN/AlGaN blue-green LEDs promise to save vast 

amounts of energy, since their electrical power consumption 

is only 12 % of that of the present incandescent bulb traffic 

lights and have extremely long lifetime (>106 h) [14]. 

There is also a large potential market of GaN in projection 

displays, where LEDs with the three primary colours would 

replace the existing liquid crystal modulation system. The 

high output power of GaN based LEDs and fast off/on times 

should also have advantages for improved printer technology 

with higher resolution than existing systems based on 

infrared lasers [15]. In underwater military systems, GaN 

lasers may have applications for communications because of 

a transmission pass band in water between 450 and 550 nm. 

In the AlGaN system, by varying the Al concentration we can 

tune the band gaps from 3.4 eV to 6.2 eV. This results in the 

fabrication of solar-blind UV detectors. UV detectors have a 

variety of military and civil applications and high 

temperature sensors are desirable under extreme conditions 

like inside jet engines. 

It also find place in space applications as it is not affected 

by harmful radiations due to shorter < 280nm wavelength 

detection limit. There is an increasing interest in the use of 

compound semiconductors for several high power/high 

temperature solid state devices for applications in power 

electronics, control and distribution circuits. While silicon 

and to a much lesser extent GaAs have been used for power 

devices, emerging GaN and SiC have significant advantages 

because of wider band gaps (higher operating temperature), 

larger breakdown voltages (higher operating voltage), higher 

electron saturated drift velocity (higher operating current) 

and better thermal conductivity (higher power density). 

Transition metal doped GaN finds applications in 

emerging fields of semiconductor spin transfer electronics 

(spintronics) which exploit the spin of charge carriers in 

semiconductors [16]. 

2. Material and Method 

In this work we have been used the first principles 
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calculations and in terms of the Ruderman–Kittel–Kasuya–

Yosida quantum spin model in Green’s function approach to 

investigated on the dependence of the Neel temperature on 

the manganese ion concentration, the temperature 

dependencies of the spin-wave specific heat and reduced 

magnetization and magnetic properties of transition metal 

(manganese) doped gallium nitride (GaN) based on first 

principle calculation method using the Ruderman–Kittel–

Kasuya–Yosida quantum spin model in Green’s function 

approach and also we would be employ computational 

methods using Mat lab program by developing suitable 

computer codes for studying different properties of transition 

metal doped (manganese) gallium nitride and we would be 

developed Mat lab code for our master equation to generate 

data and the graph in different legends. 

2.1. Green's Function Approach to the RKKY Model 

The researcher used the standard spin RKKY Hamiltonian 

model to determine coexistence of ferromagnetic and 

antiferromagnetic interactions. Hamiltonian thus allows a 

coexistence of ferromagnetic and antiferromagnetic 

interactions in the system [8]. 

The Hamiltonian used to describe the system consists of 

quantized magnon- magnon interaction energies written as 

� = ��
� ∑ ��	 Ŝ�Ŝ	                (1) 

Where ��	  is the RKKY effective spin exchange 

interaction between local spin Ŝi and Ŝ j, (Ŝ�and Ŝ	 are both 

quantum spin operators), formula 

 ��	 = ��
�  ��  ���
���ħ�  ��2����	�          (2) 

where F (x) is an oscillating function defined by the 

oscillatory nature of the RKKY. 

��� = !Xcos�x − sin�x *
X+  

The coupling constant ��
  in equation (2) is the local 

coupling of the itinerant spin to the local magnetic moment, 

m* is the effective mass of the carrier, ��  is the Fermi wave 

vector … under free electron gas approximation) Rij is the 

distance between local magnetic moments at �� and �	. Here, 

the magnetic atoms are distributed randomly in the full lattice 

of the undoped semiconductor. The prime for the summation in 

equation (1) means that the summation is done only over the 

sites occupied by magnetic impurities. Hence, we use Green’s 

function approach (1) to treat the model equation (1) In this 

scheme one uses a double-time Green’s function ≪-.�/ ; 12�/3 ≫ this satisfies the following equation of motion: 

iħ 


5 ≪ -.�/ ; 12�/3 ≫= 6�/ − /3  < 8-. �/ , 12�/3 > +≪ <-.�/ , Ĥ>? ; 12�/3               (3) 

This approach proves successful for various Heisenberg spin 

models on regular lattices. Usually, one needs more than one 

Green’s function when spin S is larger than for our random 

spin system we construct double-time spin Green’s functions 

between 1/2 spin operators at two magnetic sites Ri and Rj. 

 @�	�5,5′ AB ≪ Ŝ�C�/ ; DŜ	��/ ′ EB�� ≫         (4) 

Where’ n’ takes 1, 2, 3... 2S. as a rule, we needs 2S independent 

Green’s functions for spin S. They can be expressed as 

 @�	B �/, /′ = 1
2Hħ I @�	B �J K��L�5�53 ħ MJ 

2.2. The Green’s Function Formalism 

The Green functions play the most important part in the 

field theoretical treatment of the many body problems, and 

are especially useful for summing over the restricted 

classes of perturbation theory of diagrams, and also are 

very power full when combined with spectral 

representations. And also they are flexible enough to 

describe the effects of retarded interactions and all 

quantities of physical interest like thermodynamic 

properties can be derived from them. There are different 

types of Green functions, or propagators: one particle, 

two- particle... n particles, advanced, retard the Curie 

temperature itself is a critical point, where the magnetic 

susceptibility is theoretically infinite and, although there is 

no net magnetization, domain-like spin correlations 

fluctuate at all length scales d, zero temperature, finite 

temperature, real-time, imaginary time (2) 

 @��3�/ − /′ =≪ N��/ ; N�OC �/3 ≫= −PQ�/ − /3  − < !N��/ ; N�C�/3 * >              (5) 

Where ≪ ⋯ ≫ PS the abbreviated notations for the 

Fourier transform of the corresponding Green’s function and 

<... > denotes averaging over a ground canonical ensemble. 

This is appropriate since the number of particles is not 

constant and Q�/  is the step function. We note from (2) and 

(4) that @��O�/ − /3 ≠ 0 when /3 < /, @��O�/ − /3 = 0 

when /3 > / , and @��O�/ − /3  is not defined when /3 = /, 

because of the discontinuity of Q�/  at t=0. One important 

property of  @��O�/ − /3  is that it depends only on the 

difference �/ − /3  in the case of statistical equilibrium. 

 Q�/ − /3 = 1 PV / > /3 WXM Q�/ − /3 = 0 PV / < /3  (6) 

 @��O�/ − /3 =≪ N��/ , N�OC ≫=≪ N�, N�OC ≫   (7) 

In order to obtain equation of motion we differentiate 

equation (1) With respect to t and multiplying both sides of �3  by i. 

P M
M/ @��3�/ − /′ = P M

M/ ≪ N��/ , N�3C �/′ ≫=  6�/ − /′ < !N��/ , N�3C �/′ * > +≪ !N��/ , �*, N�3C �/′ ≫ 
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To solve equation �3  it is convenient to work with the 

Fourier transformation of this equation. 

Now let @��3�J  be the Fourier transform of @��3�/ −/′  such that 

 @��3�/ − /′ = Z @��3 �J K��L�5�53 MJ       (8) 

And 

 @��3�/ − /′ = Z @��3 �/ − /′ K��L�5�53 M�/ − /′    (9) 

In addition, the delta function can be defined as 

6�/ − /′ = Z K�L�5�5′ MJ              (10) 

Using equation (5), (6) and (7) in equation 4 we have got, 

 J@��3�J = !N��/ , N�3�/′ * > J+≪ !N��/ , �*; N�O�/3 ≫ J (11) 

Where P 


5 N��/ = !N��/ , �*  And � =< �[\]B^B >=J� < N�C; N� > 

The commuting and anti-commuting relation for the two 

operators is also given by: 

!N�N�3* = N�N�3 − _N�N�3. 
Where _=1for Boson operators, and _ = −1 for fermions 

operators. That is 

! N�N�3C *=N�aN�3aC − N�OaC N�a          (12) 

For two boson operators: 

N�aN�′a′ = 0                  (13) 

For two fermions operator: 

N�OaO = N�aN�OaOC + N�OaOC N� = 6��O6aaO     (14) 

bN�a , N�OaOc = dN�aC� N�OaOC� e = 0        (15) 

The correlation function < N�O�/ , N��/ > is related to the 

analytic property of Green functions by < N�OC��/ N��/ >=
P fP�a→h P Z 8≪ij,ijOk ≫LC�l�≪ijijOk ≫��l?mn�opoO�
L
5qpq

mrn��  

P M
M/ N� = sN�, t J�C� N�OC , N�u 

= t J<N� , N�OC�N�> 
= t J���O <N� , N�OC�N�>N� + t J���O N�OC�!N�N�* 

= t J�N�6��O��O + 0 = J�N� , v = v3 

Taking the Fourier transformation�2.6 , we get 

 J@��O = ljjO
�� +≪ !N� , �*, N�OC ≫ J       (16) 

Where !N� , �* is the commutation relation of N�  xP/ℎ the 

magnon Hamiltonian, where !N� , �[\]B^B* = J�N� WXMVz{ v = v3, 6��O = 1 

These give  
J@���J = �

�� +≪ J�N� , N�OC ≫ J        (17) 

Where ≪ J�N� , N�OC ≫ J = J� ≪ N� , N�C ≫= J@���J  

from which we obtain 

�J = J� @���J = �
�� , @���J =  �

���L�Lj                              (18) 

Poles of the Green function are given by �J − J�  from which we find despersion. Again considering equation�7  and 

taking t=/ ′ equal time correlation gives the number operators; 

≪ N� , N�C ≫ +P6 = �
���LC�l �Lj = �

�L 8 }
�L�L~ + P6J�J − J� ?                     (19) 

≪ N� , N�C ≫ − P6 = �
���L��l �Lj = �

�L 8 }
�L�L~ + P6J�J − J� ?                     (20) 

Where P is the principal part of the integral…finally; 

< N�N� >=  liml→h P Z 6�J − J� 
L
mrn�� This can be 

expressed as 

 X� = �
mrn��              (21) 

Where X� =< N�N� > is the number of magnons in state k. 

2.3. Magnon Distributions Function 

A magnon is a quantized spin wave [17]. The ground state of a 

simple ferromagnet has all spins Parallel. At long wave lengths ka 

<< 1 so that, the frequency of magnon J� is proportional to v�; 

In the same limit the frequency of a phonon is proportional to k. 

The quantization of spin waves proceeds exactly as for 

photons and phonons. The energy of a mode of frequency 

with J�  X� magnons can also be equated to, 

 �� = DX + �
�E ħJ�              (22) 

The excitation of magnon of corresponds to the reversal of 

one spin 
�
� equation �12  is the Bose-Einstien distribution 

that magnons also obey. The total number of magnons in all 

modes excited at temprature T can be caculated as: 

∑ < X�� >= Z ��J X�J MJ       (23) 

Where ��J  is the number of magnon modes per unit 

frequency range. The integral is taken over the allowed range 

of k, which is the first Brillouin zone. At sufficiently low 
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temperature we may carry the integral between 0 and ∞ 

because < X�J >→ 0 exponentially as → ∞. 

Magnons have a single polarization for each value of k [12]. 

In three dimensions the number of modes of wave vector 

less than k is D �
��E� �4Hv�  per unit volume, hence the 

number of magnons with frequency in MJ at J is: 

 D �
��E� �4Hv� 
�


L              (24) 

Under this assumption, the magnon part of the 

Hamiltonian can be written like a harmonic oscillator or 

phonon type Hamiltonian: 

��[\]B^B� = ∑ ħ�J��                (25) 

Where is the average number of magnons in state k and J� = 2���W�v� is the long wave length magnon dispersion. 

substituting J� in to equation �25 , for J� we get 

< N�CN� >= �
m

������j�
j�� ��

                (26) 

∑ < X� >= �
���� Z +���
�

m
������j�

j�� ��
�

h                (27) 

∑ < X�� = �
���� Z ��
�

m
������j�

j�� ��
�

h          (28) 

fK/ � = ����\���
���  and dy = +���\���
�

���  solving k, 

v = D ���
����\�E

�
� ��

�                 (29) 

and 

v�Mv = D ���
����\�E

�
� ���

�               (30) 

Substituting equation �2.21  in to �2.19 , we get 

∑ X� = �
���� Z D ���

����\�E
�
� Z ���

m���
�

h
�

h          (31) 

Where the integratio 

Z ���
m���

�
h = 2.3174               (32) 

ℎKX�K ∑ X� = �2.3174 � D ���
����\�E

�
�
       (33) 

∑ X� = �0.0587 � D ���
����\�E

�
�
          (34) 

Where eqution �25  gives us the number of reversed spins 

given by the ensemble average of the spin wave occupancy 

numbers. 

The average magnons excitation energy at low temprature 

is given by: ��[\]B^B� = ∑ �X��� J�.  

2.3.1. Magnon Heat Capacity in Ferromagnetism 

Magnons are other important types of energy excitation and 

they occur in magnetically ordered solids (3). The internal 

energy of unit volume of magnon gas in thermal equilibrium at 

a temperature ¡�  neglecting magnon-magnon interaction, at 

very low external field and considering vW ≪ 1 PS ¢P£KX N�: 
¥ = ∑ J�� �X��� = ∑ L~

mrn���            (35) 

taking J� = 2���W�v�             (36) 

¥ = �
��� � Z L~+L��
�

������j�
~��

�
h               (37) 

Again from equation �3.16  MJ� = 2���W��2v Mv  and 

dk� = L~
����\� 

We get dk� = �
�§���\� J�

�
�MJ�  

¥ = �
�§���\� ��

�
+�� Z L~

��
������j�

¨rnp�
�

h           (38) 

Let  

� = L~
�� ¡  and 


L~
��� = M� ⇒ M�vª¡ = MJ�  WXM vª¡ =


L~

�  

Where 
�

+�� Z ���
m� ��

�
h =0.0456 then        (39) 

¥ = 0.0456 D �
����\�E

�
� vª

«
�¡«

�          (40) 

Specific heat capacity of magnos will be caculated as: 

 ∁[\]B^B= ­®
­� = ­

­� ∑ J� < X̄� >��       (41) 

 ∁[\]B^B= ­
­� °0.0456 D �

����\�E
�
� vª

«
�¡«

�±     (42) 

 ∁[\]B^B= 0.113 D �
����\�E

�
� vª

«
�¡�

�       (43) 

This shows that ∁[\]B^B~¡�
� 

2.3.2. Magnon Heat Capacity in Antiferromagnetism 

We have seen that in the absence of an external magnetic 

field of the two magnon branches are degenerate, i.e 

J�± = 2√2�Sv�W 

Hence the internal magnon energy for anti-ferromagnet can 

be written as: 

¥ = ∑ J�� �X��                (44) 

This can be written as 

¥ = �
��� � Z  
�

m���L~µ ��
�¶��h             (45) 
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¥ = �
��� � Z J�4v��¶��h


�
m���L~µ �� = �

��� Z J�v� 
�
m���L~µ ��

�¶��h                    (46) 

¥ = �
��� Z 4√3�S�Wv� 
�

m��·�√��¸��j
j�� ¹��

�¶��h     (47) 

The upper limit can be taken as infinity for temperature 

small compared with the Neel temperature. Thus  

 ¥ = +√��º�\
��� Z v� 
�

m��·�√��¸��j
j�� ¹��

�
h         (48) 

Let � = +√��º�\�
���  and dy = +√��º�\

��� Mv, then substituting in 

to the above equation�2.39 , 

We get ¥ = ���
��� Dvª �

+√��º�\E� Z �� 
�
m���

�
h     (49) 

But the value of the integral Z �� 
�
m���

�
h = ��

�» 

Therefore, the internal magnon energy for anti-ferromagnet 

is 

¥ = ��
�h

���� �
�+√��º�\��               (50) 

Hence the magnon heat capacity is given by: 

 ∁[\]B^B= ­®
­� = +��

�h
������ �

�+√��º�\��          (51) 

Thus the predicted magnon part of the heat capacity is 

proportional to ¡� which is similar to the Debye phonon 

heat capacity. 

2.4. Ferromagnetic Transition Temperature 

Ferromagnetism refers to solids that are magnetized 

without an applied magnetic field. These solids are said to be 

spontaneously magnetized. Ferromagnetism occurs when 

paramagnetic ions in a solid “lock” together in such a way 

that their magnetic moments all point (on the average) in the 

same direction. At high enough temperatures, this “locking” 

breaks down and ferromagnetic materials become 

paramagnetic. The temperature at which this transition occurs 

is called the Curie temperature. In the ferromagnetic state at 

low temperatures, the spins on the various atoms are aligned 

parallel. There are several other types of ordered magnetic 

structures. These structures order for the same physical 

reason that ferromagnetic structures do. The Weiss theory is a 

mean field theory and is perhaps the simplest way of 

discussing the appearance of the ferromagnetic state. Thus 

the basic equation for ferromagnetic materials is 

 ¼ = ½�]¾ª1º                 (52) 

xℎK{K W3 = �¿À�Á¿��ÂCÃ �Ä
��             (53) 

That is, the basic equations of the molecular field theory are 

the same as the Para- magnetic case plus the H → H + γM 

replacement in which for the case of a simple paramagnet: ¼ = ½�]¾ª1º�W  Where 1º is the Brillouin function for 

spin it is easy to recover the high-temperature results of 1º. 

i.e. 1º�� = �C�
�� � … … . . PV � ≪ 1 

where W = ¿À�Á¿�Â
��  

Let us now indicate how this predicts a phase transition. By 

a phase transition, we mean that spontaneous magnetization 

(M ≠ 0 with H = 0) will occur for all temperatures below a 

certain temperature Tc called the ferromagnetic Curie 

temperature. At the Curie temperature, for a consistent solution 

of (51) and (52), we require that the following two equations 

shall be identical as a′ → 0 and H = 0: 

 ¼� = ½�]¾ª1º�W′             (54) 

 ¼� = ��\3
Æ�Á¿�ª¸Ç¿ È  with � → 0        (55) 

Where ¾ª = Éħ

�[  is the Bohr magneton, and g is 

sometimes called simply the g- factor, N is the number of 

particles per unit volume, If these (equation  �53  and 

equation �54 ) are identical, then they must have the same 

slope as a′ → 0. 
That is, we require 

 D
Ä�

\3 E\3→h = D
Ä�


\3 E\3→h          (56) 

Using the known behavior of 1º�W′  ' as W′ → 0 we find 

that equation (53) gives 

 ¡Ê = ¿ËÆÌ����C� ¿��Ç
��             (57) 

Equation (56) provides the relationship between the Curie 

temperature  ¡Ê  and the Weiss molecular field constant γ. 

Note that, as expected, if γ = 0, then Tc=0 (i.e. if γ → 0, there 

is no phase transition). Further, numerical evaluation shows 

that if ¡ ≫ ¡Êwith H =0 have a common solution for M only 

if M = 0. However, for ¡ ≪ ¡Ê, numerical evaluation shows 

that they have a common solution M ≠ 0, corresponding to 

the spontaneous magnetization that occurs when the 

molecular field over thermal effects. 

The Curie temperature itself is a critical point, where the 

magnetic susceptibility is theoretically infinite and, although 

there is no net magnetization, domain-like spin correlations 

fluctuate at all length scales. The study of ferromagnetic phase 

transitions, especially via the simplified Ising spin model, had an 

important impact on the development of statistical physics. 

There, it was first clearly shown that mean field theory 

approaches failed to predict the correct behavior at the critical 

point (which was found to fall under a universality class that 

includes many other systems, such as liquid-gas transitions), and 

had to be replaced by renormalization group theory (4). When 

we vary the external magnetic field H acting on solid its change 

of magnetization M as a function of temperature T hence the 

susceptibility Í (T) is given by: Í�¡ = limÂ→h ­Ä
­Â 

Thus the magnetic susceptibility of a solid  Í�¡  is 
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measured and it is used to categorize different kinds of solid 

like Ferro magnetism in which all magnetic moments are in 

parallel alignment, the effective ensures the effect of ordering 

of the system experienced by each atomic site and therefore 

is given by �mÎÎ = � + Ï¼ where Ï >0 is a constant that 

parameterize the strength of molecular field as a function of 

the magnetization. Then the mean magnetic moment or 

magnetization for N atoms is given by 

¼ = ½ ∑ ¾�� Ð� = ½ ∑ �[ÑÌ¿� mpr¶ÑÒÓ¨ÔÔp̧¸
∑ mprÒÓ¨ÔÔp̧¸

    (58) 

½¢¾ª1º��  where 1º��  is the Brillouin function given 

by the expression: 

 1º�� = �
� 8D� + �

�E coth!D� + �
�E �* − �

� coth ×
�?   (59) 

And � = Ì¿�Â¨ÔÔ
���  

where g is the land factor which depends on the magnitude of 

L and S foe � ≪ 1. 

1º�� = �ºC� �
�  and using �mÎÎ = � + Ï¼  we have a 

self-consistent equation for M as: 

¼ = ÆÌ�¿�����C� �ÂCØÄ 
���� )           (60) 

Then the equation can be written as 

¼ 81 − ÙØ
� ? = DÙ

�E �              (61) 

but ¼ = Í� so that the magnetic susceptiblity is given by: 

Í = Ù
��ÙØ                   (62) 

and obtaining the curie W eiss la, Í = Ù
���Ú which is valid for 

¡ ≫ ¡Ê  and which is independent of T and the curie 

temprature is given by ¡Ê = ÛÏ 

The Curie temperature TC is the temperature above which 

the spontaneous magnetization vanishes it separates the 

disorder paramagnetic phase at f ¡ > ¡Ê room the ordered 

ferromagnetic phase at t ¡ < ¡Ê  /he mean field constant; 

Ï = �Ú
Ù = ����Ú

ÆÌ����C� ¿��             (63) 

Where C is the curie constant. The high temperature 

susceptibility is generally taken as is evidence for 

paramagnetic spins. 

2.5. Magnetization Reversal for Ferromagnetism 

The number of reversal spins is given by the ensemble 

average of spin wave occupancy number, thus for saturation 

magnetization with the same assumption for the heat capacity 

and taking unit volume, the magnetization M (T) as a 

function of temperature can be computed by nothing that 

each spin wave mode leads to one spin wave reversal. Thus 

the spontaneous magnetization at temperature T is given by: 

 ¼º = 2¾^�Ü = 2¾^�½� − ∑ N�C N�            (64) 

And ¼º�0 − ¼º�¡ = −¼ = 2¾^ ∑ < X�� >= �¿À
��� � Z Mv� �

mÝj�
Þ ��

  

ßℎK{K ¼�0 = ¢¾ª½� , which is ground state 

magnetization or magnetization at absolute zero, ferromagnetic 

state where all spins can exploit their mutual exchange energy 

by being preferentially aligned parallel to each other has lower 

free energy than the state where �[ = 0. 

Where � = 2����  at low temperature such that �v�[\� ≫ à 

△ ¼ = ¿À 
� H� Dâ

ãE
�
� Z M���

��
h

�
m���         (65) 

Where Z M���
��

h
�

m��� = ä D�
�E å��

�  1  there fore, 

△ ¼ = 0.117¾^ Dvª¡ �æ E ��          (66) 

Thus the reduction in magnetization due to thermal spin 

wave excitation is 

△ ¼ = 0.117 ¿À
�\� Dvª¡ 2�Sæ E ��        (67) 

We can use the relation of 

¼�¡ = ¼�0 D1 − �
BºE �0.0587 Dvª¡ 2ç��W�æ E ��  (68) 

 ¼�¡ ¼�0 è = 1 − �0.0587 Dvª¡ 2ç��W�æ E ��    (69) 

Where X = Æ
é and v is the lattice cell volume =W�: 

N is the number of atoms per unit volume that is given by: ½ = XW�. 

2.6. Magnetization and Transition Temperature for  

Anti-ferromagnet 

The sub lattice magnetization at temperature T is given by 

¼�¡ = ¢¾ª ∑ �� − W�CW� ê            (70) 

Using the spin wave canonical transformation we get the 

following 

¼�¡�=  ¢¾ª�X� − ∑ sinh� Q�� − ∑ < W�CW�� > cosh 2Q�  (71) 

The second term of equation (54) gives the zero-point 

contribution to the sub lattice spin deviation. It can be shown, 

on neglecting the Zeeman term, that 

△ ¼Ümë^�^�B5 = ¢¾ª ∑ sinh� Q�� = �
� ¢¾ª ∑ ì�1 −�

í�� p�
� î − 1   (72) 
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For a simple cubic lattice this turns out to be 0.078¢¾ªX. 

The third term of equation (2.70) gives the temperature 

dependent part. Taking  ¼�¡ = ¢¾ªX�  which is ground 

state magnetization and neglecting the second term of 

equation (2.54) we obtain 

¼�¡ = ¼�0 D1 − �
B� ∑ < X� >� cosh 2Q� E = ¼�0 �1 − �

B� ∑ �
É×ïDL~ ���æ E��� cosh 2Q� =

¼�0 °1 − �
B� ∑ �1 − í�� p�

� �
É×ïDL~ ���æ E��� ±  

But the value of �1 − í�� p�
�  =

√�
�\, hence 

Ä�� 
Ä�h = 1 − √�

B\� ∑ �
�8É×ïDL~ ���æ E��?�                                  (73) 

Now the researcher used ∑ �
�8É×ïDL~ ���æ E��?� = �

��� � Z 
��
�8É×ïDL~ ���æ E��?

�¶��h  

The upper limit can be taken as infinity for temperatures small compared with the Neel temperature. Thus 

∑ �
�8É×ïDL~ ���æ E��?� = �

��� � Z +��
�
�8É×ïDL~ ���æ E��?

�
h = �

��� Z �
�
m��·�√��¸��j

j�� ¹��
�

h   

fK/ � = +√��º�\�
��� ; v = ���

+√��º�\� � and Mv = ���
+√��º�\� M� 

∑ �
�8É×ïDL~ ���æ E��?� = �

��� D ���
+√��º�\�E� Z �
�

m���
�

h   

The value of the integration Z �
�
m���

�
h = ��

ð  

Hence substituting all these values in equation (2.56) we 

will get 

Ä�� 
Ä�h = 1 − √�

��Æ� D ���
+√��º�\�E�

          (74) 

But when 
Ä�� 
Ä�h  goes to zero, T approaches to ¡Æ which gives 

 ¡Æ = �48 �
� D ��

��E �½� �
��            (75) 

3. Results and Discussion 

In the previous chapter we have obtained expressions of 

magnetization, specific heat and transition temperature for 

antiferromagnetic magnons based on spin wave theory using 

the Holstein-Primakoff transformations. In addition to these 

we have also calculated the number of magnons excited in 

the mode k at a temperature T using Green’s function. To 

calculate all of the above quantities first we have got the 

dispersion relation for magnons in an anti-ferromagnet and 

ferromagnet. The dispersion relation for magnons in an 

Antiferromagnete is linear in k which is quite different from 

that of magnons in a ferromagnet which is quadratic in k. 

In this chapter we tried to generalize the main results 

obtained in this work and investigate the results with the help 

of figures. 

3.1. Effects of Temperature on Magnetization 

The reduced magnetization as a function of temperature 

can be computed by noting that each spin-wave mode leads 

to one spin reversal distributed coherently throughout the 

entire lattice. We have got the theoretical formalism 

describing the dependence of reduced magnetization due to 

thermal spin-wave excitations on temperature as follows: 

 

Figure 1. Reduced magnetization VS temperature when values of x are kept 
constant. 

As we have seen from the figure Curves are slightly different 

for different values of the concentration (x) of the manganese 

ion, however, they all have a convex upward shape. The reduced 

magnetization versus temperature curve is obtained for x = 

0.045, 0.06 and 0.075. In a reduced magnetization, versus 

reduced temperature graph, the reduced magnetization decreases 

and goes to zero with increasing reduced temperature. At T < Tc 

there is saturation magnetization (ferromagnetic state) and at T > 

Tc there is a Paramagnetic region. 
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As  Ä�� 
Ä�h → 0  then ¡ → ¡Ê  this 

gives, ¡Ê = Í D���
�� E D B\��

h.h»§ñE 2�
�, thus there exists the possibility 

of ferromagnet below a certain critical temperature Tc called 

the curie temperature which is directly proportional to the 

concentration of the impurity atom ¡Ê ≈ Í 

However, for ¡ ≪ ¡Ê, numerical evaluation shows that they 

have a common solution M ≠ 0, corresponding to the spontaneous 

magnetization that occurs when the molecular field over thermal 

effects. The Curie temperature itself is a critical point, where the 

magnetic susceptibility is theoretically infinite and, although there 

is no net magnetization, domain-like spin correlations fluctuate at 

all length scales. The study of ferromagnetic phase transitions, 

especially via the simplified Ising spin model, had an important 

impact on the development of statistical physics. Thus, there exists 

the possibility of ferromagnetism below a certain Critical 

temperature Tc called the Curie temperature which is directly 

proportional to the concentration of the impurity atom. i.e. ¡Ê is 

proportional to the concentration (x): At temperature below Tc, 

the ferromagnetic state is stable. For;  ¡ → 0  the magnetic 

moment when all spins are aligned completely parallel. As we 

have seen from the figure 2, the graph of Neel temperature versus 

manganese ion concentration is linear. The dependence of Neel 

temperature on concentration is observed for GaMnN for the 

range (0.2- 0.8). The figure below shows that the Neel 

temperature for GaMnN increases linearly with increasing the 

concentration of manganese ion increases in the range given 

above from the equation�3.58  and taking the constants for 

GaMnN TN=731.5 x thus for our calculation the highest Neel 

temperature obtained T=146.3k within the concentration of 0.2 as 

shown in the figure below. 

 

Figure 2. Neel temperature versus concentration. 

3.2. Implication of Specific Heat on Temperature 

The detailed ferromagnetic and antiferromagnetic magnon 

specific heat capacity per unit volume versus temperature T for 

GaMnN will be shown in this work. To derive the specific heat 

we neglect magnon-magnon interactions, which is justifiable 

in the very-low-temperature regions. We have seen that 

magnons behave like Bose particles. Thus the internal energy 

of a system of magnons in thermal equilibrium at temperature 

T using equation�3.35  is given by: ¥ = ��
�h

���� �
�+√��º�\�� 

 

Figure 3. Heat capacity per unit volume VS temperature when values of x 
are kept constant. 

Taking the derivative of the above equation with respect to 

T, we get the specific heat capacity per unit volume, which is 

 ∁[\]B^B = +��
�h

������ �
�+√��º�\��  ⇒ Magnon heat capacity of 

antiferromagnetic 

Because U goes to zero just at ¡Æ  and vanishes at all 

temperatures above it, there is no latent heat associated with the 

disappearance of the magnetization (5). Thus the heat capacity 

for anti-ferromagnet in the low-temperature region arising 

mainly from magnons is proportional to ¡� and using equation � 2.27 , we can find the magnon heat capacity for ferromagnetic. 

�KX�K, ∁[\]B^B= 0.113 D �
����\�E

�
� vª

«
�¡�

� ⇒ Magnon heat 

capacity for ferromagnet. 

Then, we can draw the graph that shows the result of heat 

capacity per unit volume VS temperature when values of x are 

kept constant for ferromagnet in the figure that is shown below. 

 

Figure 4. Heat capacity per unit volume VS temperature when values of x 
are kept constant in ferromagnet. 
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Table 1. Summary of spin wave properties (at low energy and at low temperature). 

 Dispersion relation Magnetization Magnetic Specific Heat 

Ferromagnet J = -���  ≈ ¡�
�  ≈ ¡�

�  

Antiferromagnete J = -��  ≈ ¡�  ≈ ¡�  

 

4. Conclusion 

In the present investigation we have studied the 

ferromagnetism and anti-ferromagnetism of GaN which is 

doped with transition metal element (manganese). 
Ga1-XMnXN as can be considered as a model system for III-V 

diluted magnetic semiconductors, which are promising 

materials for future spintronics applications. In view of future 

applications, a proper characterization and understanding of 

the physical properties of Ga1-XMnXN is essential, and 

techniques to increase the ferromagnetic transition 

temperature like post-growth annealing must be explored. 

While dilute magnetic semiconductors could be a useful class 

of materials and assume a crucial role in enabling the 

semiconductor spintronics devices, much remains 

unanswered with regards to the mechanism of magnetism in 

these materials. Traditional III-V candidates such as 

Ga1-XMnXN, which are typically p-type, have been studied in 

great detail. Optical as well as electrical measurements have 

established carrier-mediated ferromagnetism in these 

materials. However, the highest Tc obtained in these 

materials >300K, making them undesirable for technological 

applications and from magnon distribution function, the total 

number of magnons in all modes excited at temperature T 

can be calculated as: 

∑ X� = �0.0587 � D ���
����\�E

�
�
, Which follows ¡�

� relation 

and the Neel temperature for Ga1-XMnXN increases when the 

concentration of manganese ion increases in the range 0.2≤ 
x ≤ 0.8 hence Ga1-XMnXN is found to be 

anti-ferromagnetism in the Neel temperature of  ¡Æ =146.3 − 585.2 and thus for our calculation the highest Neel 

temperature obtained T=146.3k within the concentration of 

0.2. The heat capacity for anti-ferromagnet in the low 

temperature region arising from magnons is proportional to ¡� which is similar to the Debye phonon heat capacity 

whereas the heat capacity of ferromagnet is proportional to 

¡�
�  and the specific heat decreases with concentration 

keeping the temperature constant /ℎW/ PS ∁[\]B^B≈ �
��, the 

magnetization reversal is flew the relation of ≈ ¡�
�  and ≈ ¡� respectively for ferromagnetic and anti ferromagnetic 

but vanishes as ¡ → ¡Ê  for ferromagnetism and ¡ → ¡Æ 

for antiferromagnetism. 
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